Retirement Consumption and Pension Design

Jonas Kolsrud, National Institute of Economic Research Camille Landais, LSE Daniel Reck, University of Maryland Johannes Spinnewijn, LSE

M-TAXI

May 19, 2023

1/22

Motivation: Evaluating Welfare Effects of Pension Reforms

- Public discussion of pension reforms focuses on fiscal sustainability
 - Large reforms in last 25 years
 - Emphasis esp. on incentives to induce workers to retire later
 - \Rightarrow Steeper pension profiles

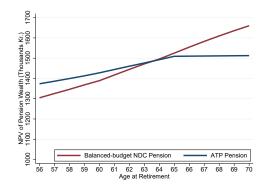


Figure: PROFILE OF SWEDISH PENSION BENEFITS: PRE VS POST NDC REFORM

Motivation: Evaluating Welfare Effects of Pension Reforms

- How to evaluate welfare effects of steeper profiles?
 - Trade-off btw providing incentives (fiscal sustainability) and smoothing consumption
 - Yet, relatively little progress (relative to UI, DI, HI, etc.)

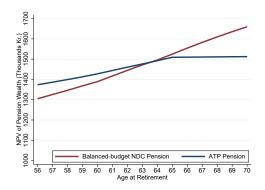


Figure: PROFILE OF SWEDISH PENSION BENEFITS: PRE VS POST NDC REFORM

Motivation: Evaluating Welfare Effects of Pension Reforms

• Challenges:

- Complex dynamic environment (labor supply, savings, real estate, health expenditures, death, bequests,...)
- Complex institutions (pension rules, etc.)
- Data limitations (esp. on value of pensions)

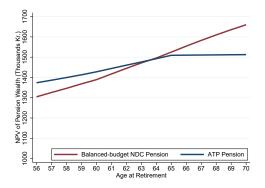
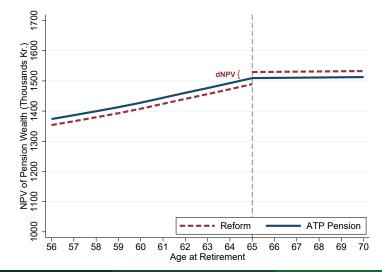


Figure: PROFILE OF SWEDISH PENSION BENEFITS: PRE VS POST NDC REFORM

This Paper

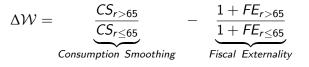
Provide framework to assess welfare effects of pension reforms


- Allows for general & complex environment
- Expresses welfare impacts in simple terms
 - consumption smoothing vs. incentives
- Can easily connect to the data under transparent assumptions

This Paper

- Provide framework to assess welfare effects of pension reforms
 - Allows for general & complex environment
 - Expresses welfare impacts in simple terms
 - consumption smoothing vs. incentives
 - Can easily connect to the data under transparent assumptions
- Study welfare consequences of steeper pension profile in Sweden
 - Use rich admin data from Swedish registers
 - Estimate consumption smoothing costs
 - Revealed by consumption & selection patterns by retirement age
 - Main Findings:
 - $\textbf{0} \ \ \text{High cost of steeper profile after 65} \ (\sim \ \text{pension rewards after NRA})$
 - **②** High cost of steeper profile before 61 (\sim pension penalties before EEA)
 - S Lower cost of steeper profile btw 61 and 65

Conceptual Framework: Stylized Reforms


Figure: Steepening Pension Profile At Retirement Age r=65

Kolsrud, Landais, Reck, Spinnewijn

Conceptual Framework: Evaluate Pension Reform

- Focus on within-cohort welfare effects
- Start from rich life-cycle model, build on "variational" approach
 Exploit envelope conditions and focus on first-order impacts
- 'Baily-Chetty' formulae for small changes to pension profile:

• *CS_r* depends on marginal utility of consumption in retirement for individuals who retire at age *r*

▶ Model) → Planner's pb) → Fiscal Externality) → Behavioral

Measuring Consumption Smoothing Costs • Summary Table

Differences in Consumption Levels in Retirement: • Details

$$\frac{CS_{r\leq 65}}{CS_{r>65}} \cong \theta \cdot \left(1 + \gamma \times \frac{c_{r>65} - c_{r\leq 65}}{c_{r>65}}\right)$$

- Differences in consumption levels by retirement age are key
- ullet Consumption difference is scaled with curvature of utility γ
- $\theta = 1$: assume retirement age groups have the same MUC conditional on consumption
- Oifferences in Consumption Drops at retirement (e.g., Gruber '97)
- Oifferences in MPCs when retired (Landais & Spinnewijn '20)

Measuring Consumption Smoothing Costs • Summary Table

- Differences in Consumption Levels in Retirement: Details
- **2** Differences in **Consumption Drops** at retirement (e.g., Gruber '97)

$$\frac{CS_{r\leq 65}}{CS_{r>65}} \cong \frac{1+\gamma_{r>65} \times E_{r>65}(\Delta c/c)}{1+\gamma_{r\leq 65} \times E_{r\leq 65}(\Delta c/c)}$$

- Captures insurance value against work longevity risk
 - Diamond & Mirrlees '86, Golosov & Tsyvinski '06
- Assumptions:
 - diff. in *C* pre retirement are either irrelevant to the planner or addressable by other policy tools
 - Retirement age groups have same evolution of MU_C around retirement.
- Oifferences in MPCs when retired (Landais & Spinnewijn '20)

Measuring Consumption Smoothing Costs • Summary Table

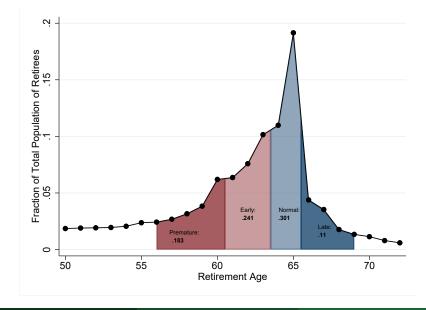
- Differences in Consumption Levels in Retirement: Details
- ② Differences in Consumption Drops at retirement (e.g., Gruber '97)
- Oifferences in MPCs when retired (Landais & Spinnewijn '20)

$$\frac{CS_{r\leq 65}}{CS_{r>65}} \cong \frac{\frac{mpc_{r>65}}{1-mpc_{r>65}}}{\frac{mpc_{r\leq 65}}{1-mpc_{r<65}}}$$

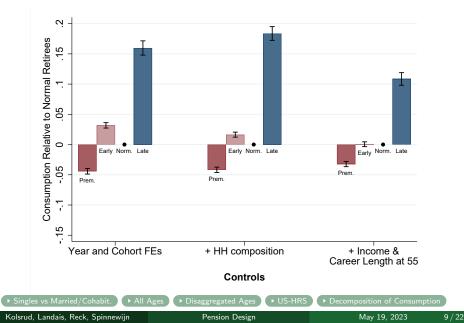
- Identifies liquidity value of pension
 - MPC captures implicit price of raising additional dollar of consumption

Labor Market History, Retirement, and Pensions

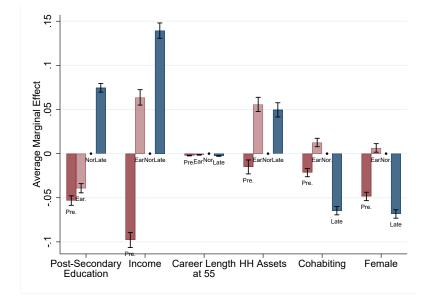
- Panel data covering all individuals aged 16+,1990-2017, incl. retirement data (LISA)
- ATP/NDC pension benefits data


Consumption

- Measure consumption expenditure for every Swedish household, 2000-2007 (see Kolsrud, Landais, & Spinnewijn, 2020)
- Implement Consumption = Income Saving w/income, wealth data

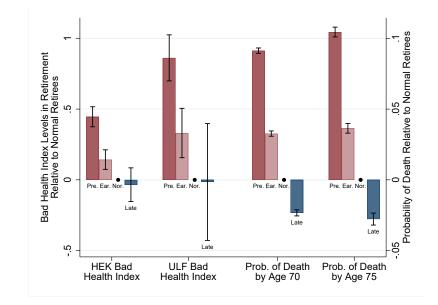

Supplementary data

- Consumption expenditure survey
- Consumption survey data from USA (HRS) and Europe (SHARE)
- Death register
- Health data from two additional surveys

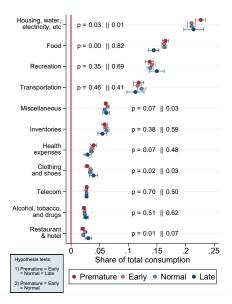

Distribution of Retirement Age • Data

Consumption differences at age 68 by retirement age

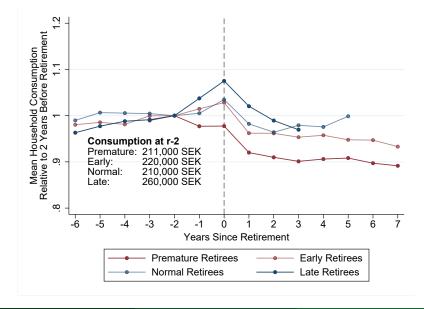
Heterogeneity & selection into retirement age

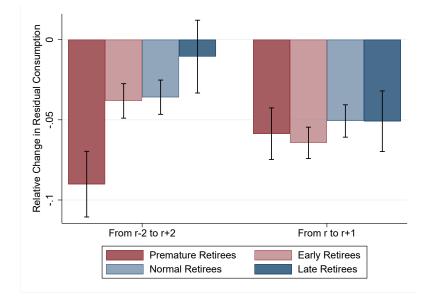


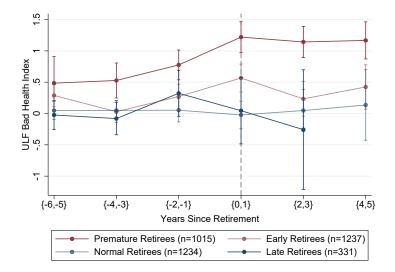
Kolsrud, Landais, Reck, Spinnewijn

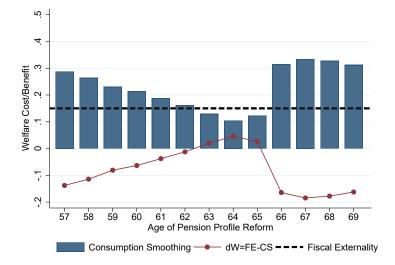

May 19, 2023

10/22

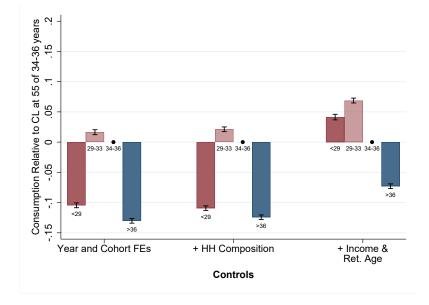

Heterogeneity & selection into retirement age


Differences in consumption shares during retirement

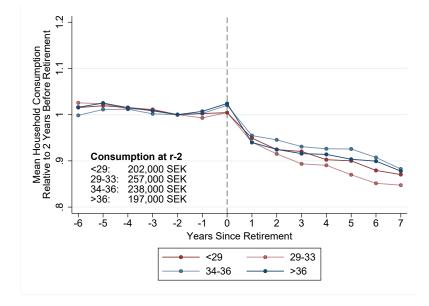

Consumption dynamics around retirement


Consumption dynamics around retirement

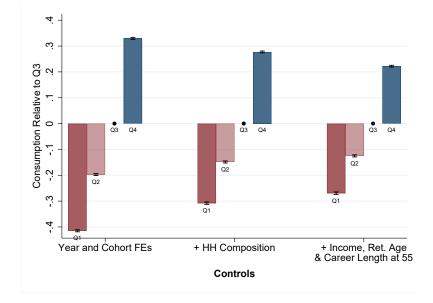
Consumption Dynamics & Health Shocks

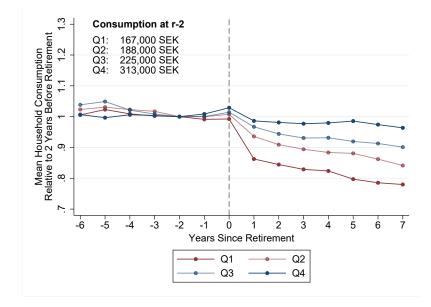


Welfare Implications: Consumption Level Implementation



Sensitivity


Consumption differences in retirement: career length


Consumption dynamics around retirement: career length

Consumption dynamics around retirement: wealth

Consumption dynamics around retirement: wealth

Implications for Pension Design: Retirement Age

• Significant consumption smoothing costs of steeper profile

- Steep positive gradient of consumption with retirement age
- 2 Selection on health / life exp. make steeper profiles more regressive
- Similar conclusion when focusing on insurance/liquidity value only
- Suggests optimality of S-shaped pension profile
 - Providing incentives is costly at premature retirement ages at late retirement ages
 - Selection effects: providing higher incentives is most sensible btw 60-65
- Implications are local & conditional on rest of tax/transfer system!

Pension Benefits = b(Ret Age, Career Length, Income)

- Reform career length incentives to encourage work?
 - Strong negative gradient btw early career labor supply and consumption
 - Suggests increasing incentives through career length/early career incentives is welfare improving
 - \bullet Cons. differences predate retirement \implies mainly redistribution
- If atten benefit profile over lifetime income/wealth?
 - Large gradient in consumption and drop in cons. around retirement
 - \implies redistributive and insurance benefits to a flatter profile
 - Should trade off benefits against behavioral responses, consider other policy tools (Atkinson-Stiglitz etc)

APPENDIX SLIDES

1/49

$$U_{i}(b,\tau) = \max \Sigma_{t=0}^{T} \beta^{t} \int u(c(\pi_{i,t}),\zeta(\pi_{i,t})) dF(\pi_{i,t})$$

subject to

$$a_{i,t+1} = R(\pi_{i,t}) [a_{i,t} + y(\pi_{i,t}) - c(\pi_{i,t})]$$

$$y(\pi_{i,t}) = \begin{cases} w(\pi_{i,t}) - \tau(\pi_{i,t}) \text{ if } s(\pi_{i,t}) = 1\\ b(\pi_{i,t}) \text{ if } s(\pi_{i,t}) = 0 \end{cases}$$

- $c(\pi_{i,t})$: consumption
- $\zeta(\pi_{i,t})$: other choices (e.g., labor supply) and characteristics (e.g., productivity)
- $\pi_{i,t}$ is individual state history at age t
 - Contains relevant determinants of utility, choices and policy
 - Includes earlier choices, but also shocks to human capital, financial capital, health capital, etc
- $b(\pi)$ and $\tau(\pi)$ pension benefit/tax function

• Planner's problem: Government's probem:

$$\max \mathcal{W}(b,\tau) = \int_{i} \omega_{i} U_{i}(b,\tau) + \lambda GBC(b,\tau)$$

subject to

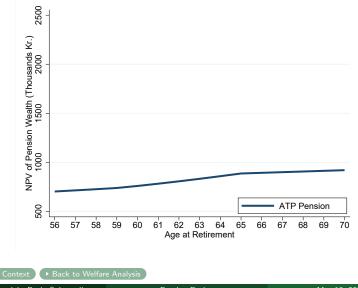
$$GBC(b,\tau) = \Sigma_{r} \left[S(r) \frac{\tau_{r}}{R^{r}} + \left[S(r-1) - S(r) \right] NPV_{r} \right] - G_{0}.$$

- Pension reforms
 - Change in profile of pension as a function of retirement age r
 - Approach valid for any other marginal reform

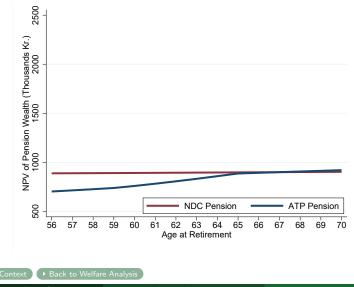
Back

• Old system - ATP Pension:

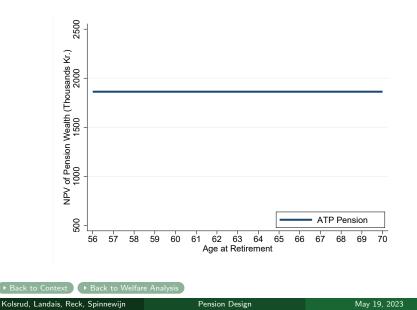
- Defined Benefit system
- accumulate pension points up to age 65 or 30 yrs of career
- replacement rate applied to average of highest 15 yrs of earnings

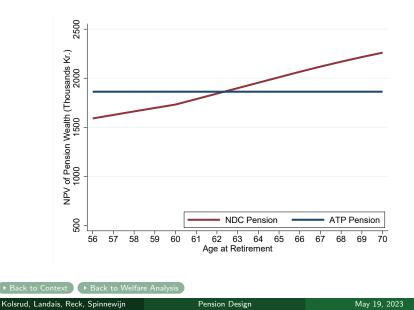

• New system - NDC Pension:

- Notional Defined Contribution system
- stronger link between contributions and benefits
 - eliminate age and career length cap for accumulation of points
 - use all contribution years for calculation of replacement rate
 - higher maximum pension benefit
 - BUT more generous minimum pension benefit
- gradually phased in over cohorts 1938-1953



4 / 49

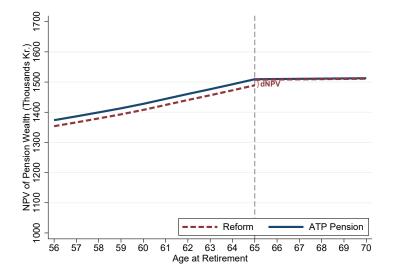

Context: NPV of Pension Wealth By Retirement Age Old ATP System - 1st ATP Decile


Context: NPV of Pension Wealth By Retirement Age New NDC System - 1st ATP Decile

Context: NPV of Pension Wealth By Retirement Age Old ATP System - 10th ATP Decile

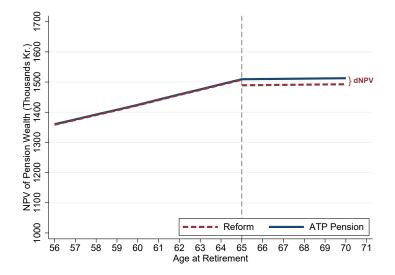
Context: NPV of Pension Wealth By Retirement Age New NDC System - 10th ATP Decile

• Fiscal Externality:

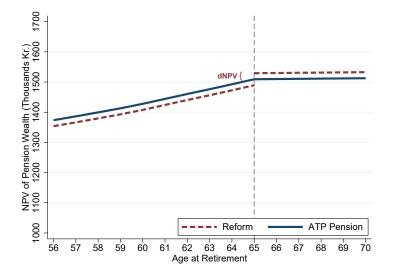

• Depends on overall response in survival in employment S(t) at age t, but response around reform age is presumably key

$$FE_{r \leq 65} \approx \lambda [1 - \Sigma_{r'} \underbrace{[\tau_{r'} - [NPV_{r'} - NPV_{r'-1}]]}_{\text{Participation Tax Rate}} \times \frac{\partial S_{r'}}{\partial NPV_{r \leq 65}}]$$

• Swedes retire later in response to steeper profile • Labor Supply Responses


▶ Back

Marginal Reform Combination: $dNPV_{r \le 65} < 0$



Marginal Reform Combination: $dNPV_{r>65} < 0$

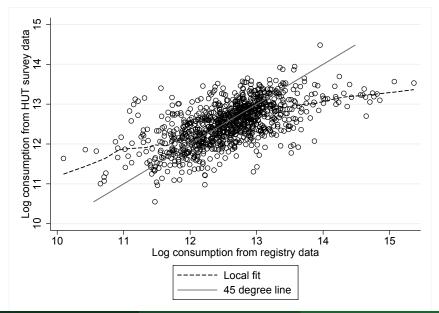
Marginal Reform Increasing Incentives at 65

- **Consumption**: Registry data on all earnings/income, transfers/taxes, debt & assets (balance & transactions), some durables
 - Consumption as a residual expenditure measure (Kolsrud et al. '18,'20)

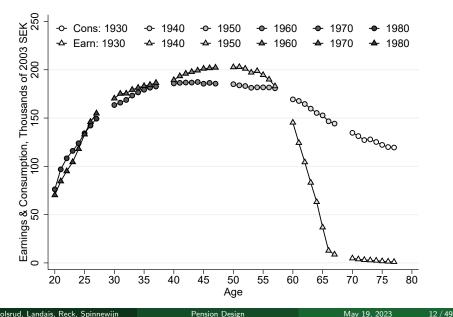
```
consumption_t = income_t - \Delta assets_t
```

Details Consistency with survey data Lifetime Consumption Profile

- Consumption-expenditure measure for universe of HH for 2000-2007
- Labor Market: Full labor market history since 1993
 - $\bullet~\mbox{Retirement} = \mbox{year}$ when earnings fall permanently below PBA
- Pensions: Universe of HH since 1920s cohorts
 - State ATP and NDC contributions, rights, claims, benefits, etc.
 - Occupational pensions & Individual pension savings
- Health: Death registries + Rich survey info matched with admin data


▶ Back

• Simple idea: consumption as a residual expenditure measure,


 $consumption_t = income_t - \Delta assets_t$

- We use admin data (from tax registers) on earnings *y*, transfers *T*, bank savings *b*, outstanding debt *d*, other financial assets *v* and real assets *h*.
 - Account for returns from assets and changes in stock value Details
- Note that we check consistency with consumption survey data

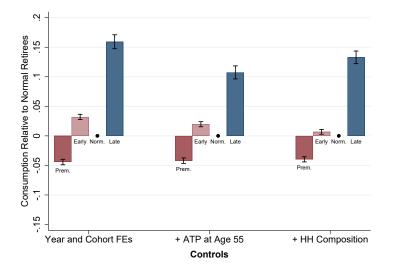
Consistency with survey data

Lifetime Consumption & Earnings Profiles

Kolsrud, Landais, Reck, Spinnewijn

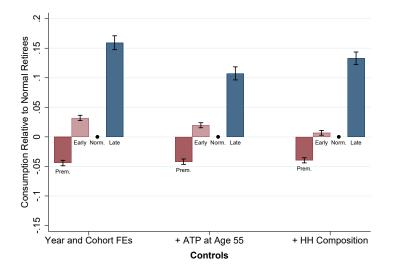
Consumption Equation

$$c_t = y_t + T_t + \tilde{c}_t^b + \tilde{c}_t^d + \tilde{c}_t^v + \tilde{c}_t^h$$

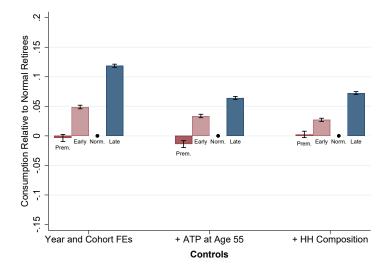

• Δv_t : change in stock value $p_t^v q_t^v - p_{t-1}^v q_{t-1}^v$

• Real assets:
$$\tilde{c}_t^h = y_t^h - \Delta h_t$$

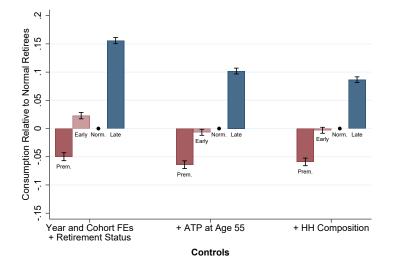
- y_t^h : rent, imputed rent, price change
- Δh_t : change in stock value


Back

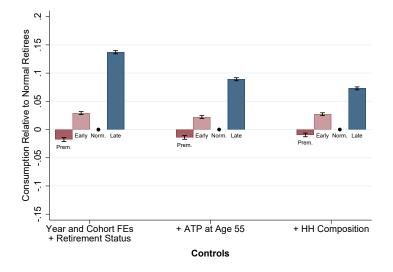
Consumption (At All Ages) By Retirement Age



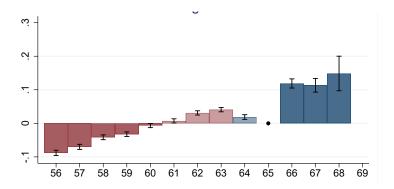
Consumption (At All Ages) By Retirement Age: Retired



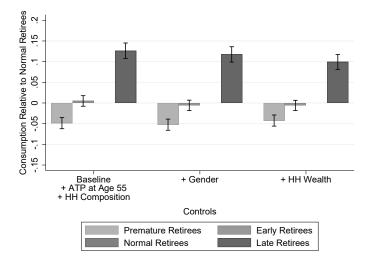
Consumption (At All Ages) By Retirement Age: Not Ret.



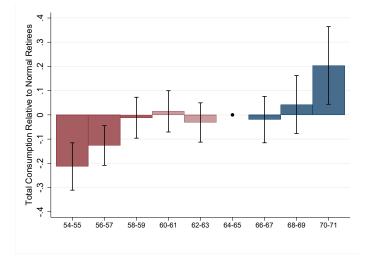
Consumption By Retirement Age: Singles



Consumption By Retirement Age: Married/Cohabiting



Consumption By Disaggregated Retirement Age


▶ Back

Consumption By Retirement Age: Gender, Wealth Controls

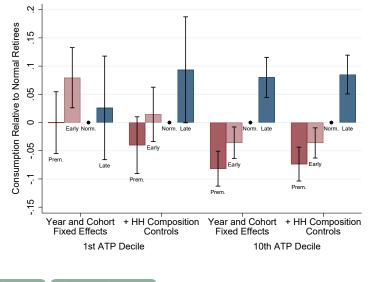
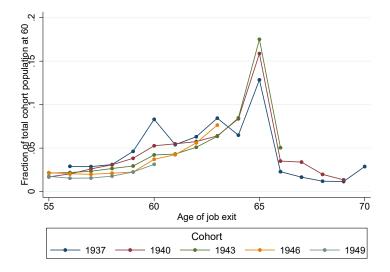
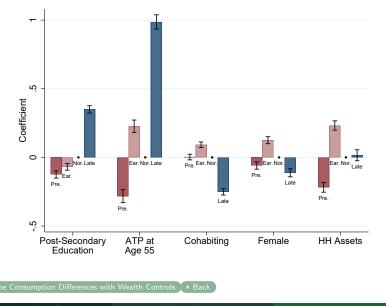


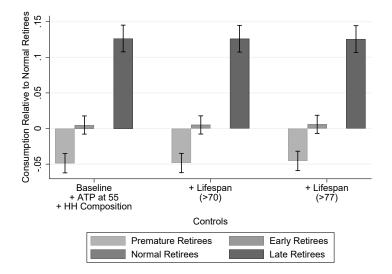
Figure: CONSUMPTION LEVELS BY RETIREMENT AGE IN THE US: HRS DATA



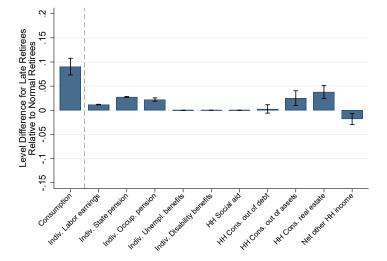
Consumption By Retirement Age: By ATP Decile


Back to Robustness >> Back to Welfare Analysis

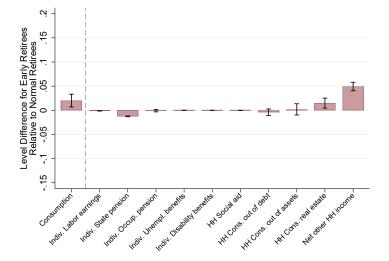
Distribution of Retirement Age By Cohorts

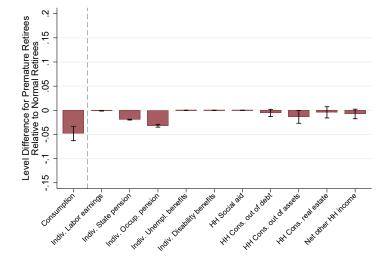


Selection Into Retirement Ages

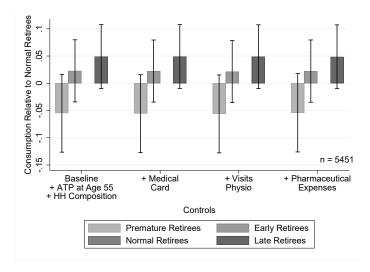


Consumption By Retirement Age: Lifespan Controls

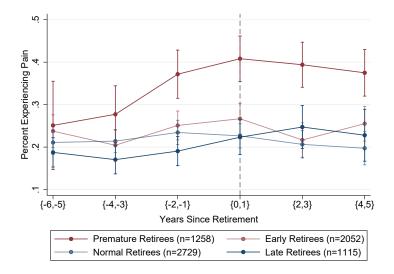



Consumption Decomposition - Age 68: Late Retirees

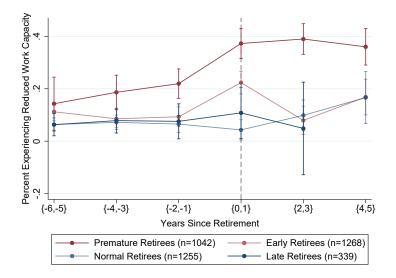
Consumption Decomposition - Age 68: Early Retirees



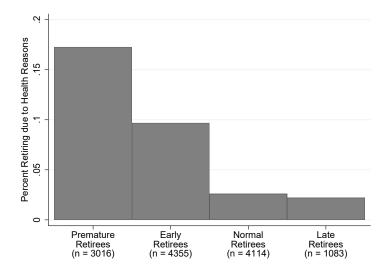
Consumption Decomposition - Age 68: Premature Retirees



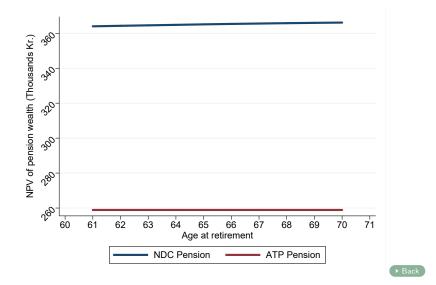
Consumption (At All Ages) By Retirement Age: Health Controls



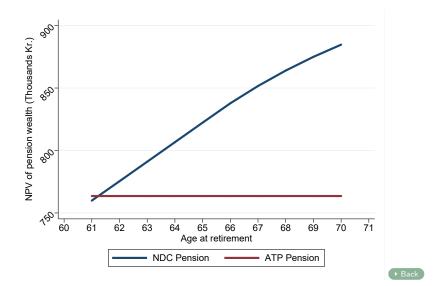
Event Study Health Outcomes: Pain



Event Study Health Outcomes: Reduced Work Capacity



Health As Reason For Retirement By Retirement Age



NPV of Pension Wealth By Retirement Age: w = P10

NPV of Pension Wealth By Retirement Age: w = P90

Summary: CS Implementation Approaches • Back

Empirical Inputs	Economic Interpretation	Assumptions	Challenges		
	Implementation 1: Consumption Levels – Equation 9				
$E_{r \ge \bar{r}}(c), E_{r \le \bar{r}}(c)$: Average consumption levels of	Captures both the redistributive and	Homogeneous relative risk aversion γ	Measuring γ		
individuals retiring before vs after ř	insurance value of profile reform	$\omega_r \frac{\partial u(\hat{c}, \hat{\zeta}_{r,t})}{\partial c}$ constant across retirement ages r	Gauging selection into retirement ages based on <i>SMU</i> of consumption, driven by ω_r or $\zeta_{r,t}$		
		Taylor approximation (Chetty [2006])			
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])			
$\Delta c_{r > \bar{r}}, \Delta c_{r \leq \bar{r}}$: Average drop in consumption	Captures only the insurance value of profile	Homogeneous relative risk aversion γ	Measuring γ		
around retirement of individuals retiring before vs after \tilde{r}	reform	$\omega_r \frac{\partial u\left(c_{r,gwr},\zeta_{r,t}\right)}{\partial c}$ constant across retirement ages r	Gauging selection into retirement ages based on <i>changes</i> in <i>SMU</i> of consumptio around retirement, driven by $\frac{\zeta_{r,r}}{\zeta_{r,pre}}$		
		Taylor approximation (Chetty [2006])			
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])			
$mpc_{r>\bar{r}}, mpc_{r\leq\bar{r}}$: Average marginal propensity to consume in retirement of individuals retiring before vs after \bar{r}	Captures the liquidity value of profile reform	Constant relative curvature of u over consumption c and resources in ζ across retirement ages (Landais and Spinnewijn [forthcoming])	Finding exogenous unanticipated income shocks to identify MPCs across retirement ages		
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])			

Kolsrud, Landais, Reck, Spinnewijn

Pension Design

May 19, 2023

30 / 49

• Important concern that people do not prepare adequately for retirement (e.g., Blundell et al. '98, Chetty et al '14)

 $\Delta W \approx \text{Cons. smoothing effects} + \text{FE} * \text{Behavioral Resp.}$ (1) +Marginal Internalities * Behavioral Resp.

- Behavioral biases can affect the redistributive impact of the pension policy, but impact is still fully captured by *CS*
 - e.g., myopic agents retire prematurely and have too little savings
 - our measures of CS do not rely on indiv. optimization
- Behavioral biases give rise to 'internalities': magnitude of welfare impact depends on behavioral response to policy
 - e.g., myopic agents save too little but do not respond to pension profile incentives (Chetty et al '14) \Rightarrow small first-order welfare effect

31 / 49

Consumption Smoothing Gains

• Marginal value of increasing pension benefits depends on consumption of retirees:

$$CS_{b(x)} = E_{b(x)} \left(\omega_i \frac{\partial u(c_i, \zeta_i)}{\partial c} \right)$$

$$\cong E_{b(x)} \left(\omega_i \frac{\partial u(c_0, \zeta_i)}{\partial c} \left[1 + \frac{\partial^2 u(c_0, \zeta_i) / \partial c^2}{\partial u(c_0, \zeta_i) / \partial c} \left[c_i - c_0 \right] \right] \right)$$

• Relative consumption smoothing gains are:

$$\frac{CS_{b(x)}}{CS_{b(x')}} \cong \frac{\omega_{b(x)}}{\omega_{b(x')}} \frac{\frac{\partial u(c_{b(x')}, \zeta_{b(x)})}{\partial c}}{\frac{\partial u(c_{b(x')}, \zeta_{b(x)})}{\partial c}} \left[1 + \frac{\partial^2 u(c_{b(x')}, \zeta_{b(x)}) / \partial c^2}{\partial u(c_{b(x')}, \zeta_{b(x)}) / \partial c} [E_{b(x)}(c_i) - E_{b(x')}(c_i)] \right]$$

• This uses a Taylor expansion around $c_0 = E_{b(x')}(c_i)$ and relies on no within-group heterogeneity in ω_i and ζ_i .

Back

32 / 49

Insurance Value: Consumption Drops at Retirement

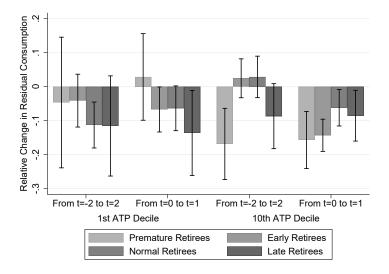
• Marginal value of increasing pension benefits depends on consumption of retirees:

$$CS_{b(x)} \cong E_{b(x)} \left(\omega_i \frac{\partial u(c_0, \zeta_i)}{\partial c} \left[1 + \frac{\partial^2 u(c_0, \zeta_i) / \partial c^2}{\partial u(c_0, \zeta_i) / \partial c} \left[c_i - c_0 \right] \right] \right)$$

• Relative consumption gains can be approximated using:

• Differences in consumption drops at retirement:

$$\frac{CS_{b(x)}}{CS_{b(x')}} \cong \theta \times \frac{1 + \sigma_{b(x)}[c_i - c_{r-1}]]}{1 + \sigma_{b(x')}[c_i - c_{r-1}]]}$$


- Relies on Taylor expansion around pre-retirement consumption $c_0 = c_{r-1}$ and assumes $\frac{\partial u(c_{r-1},\zeta|r)/\partial c}{\partial u(c_{r-1},\zeta|r-1)/\partial c} = 1$
- Focuses purely on insurance aspect for θ = 1 (i.e., taking pre-retirement redistribution as desirable):

$$\theta = \frac{\omega_{b(x)}}{\omega_{b(x')}} \frac{\partial u\left(c_{r-1}, \zeta_{b(x)}\right) / \partial c}{\partial u\left(c_{r-1}, \zeta_{b(x')}\right) / \partial c}$$

 Insurance can be against unanticipated shock to earnings ability, or against myopia/lack of self insurance

Kolsrud, Landais, Reck, Spinnewijn

Consumption Drops At Retirement: ATP Deciles

Liquidity Value: MPC

• Marginal value of increasing pension benefits depends on consumption of retirees:

$$CS_{b(x)} \cong E_{b(x)} \left(\omega_i \frac{\partial u(c_0, \zeta_i)}{\partial c} \left[1 + \frac{\partial^2 u(c_0, \zeta_i) / \partial c^2}{\partial u(c_0, \zeta_i) / \partial c} \left[c_i - c_0 \right] \right] \right)$$

- Relative CS gains can be approximated using:
 - Differences in MPCs :

$$\frac{CS_{r<65}}{CS_{r\geq65}} \cong \frac{E_{r<65} \left(\frac{dc_{it}/dy_{it}}{1-dc_{it}/dy_{it}}\right)}{E_{r\geq65} \left(\frac{dc_{it}/dy_{it}}{1-dc_{it}/dy_{it}}\right)}$$

 Focuses on ability to smooth consumption (Landais & Spinnewijn '20) (i.e., marginal value of transfer depends on its shadow price)

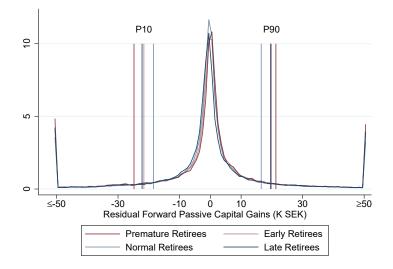
• Assumes curvature in preferences is the same across groups (i.e., to infer shadow price from MPC)

Sample Descriptive Stats

	Retirement Sample		Retirement x Stock Sample				
	Mean	(s.d.)	Mean	(s.d.)			
I. Retirement			•				
Premature Retirement Probability	14.63 %		15.12 %				
Early Retirement Probability	35.2 %		38.86 %				
Normal Retirement Probability	35.62 %		33.77 %				
Late Retirement Probability	14.56 %		12.24 %				
II. Demographics							
Cohort	1941.71	(5.25)	1940.67	(4.19)			
Fraction Men	49.49 %	(50)	52.79 %	(49.92)			
Fraction Married	62.45 %	(48.42)	70.88 %	(45.43)			
Post-Secondary Education	25.71%	(43.71)	31.04 %	(46.26)			
III. Income and Wealth at 59, SEK 2003(K)							
Total Earnings	227.66	(170.19)	226.99	(195.89)			
Net Wealth	906.30	(2,595.50)	1,366.60	(3,062.00)			
Bank Holdings	103.50	(404.00)	142.80	(572.80)			
Portfolio Value	319.28	(14,612.60)	332.95	(15,077.30)			
Consumption	224.95	(720.72)	242.25	(1,158.50)			
Ν	1,328,268		372,831				

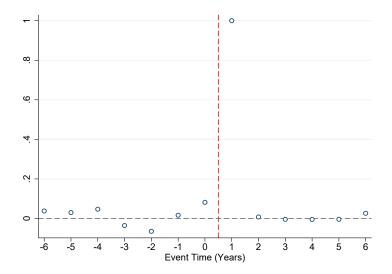
Back

• Define passive KG

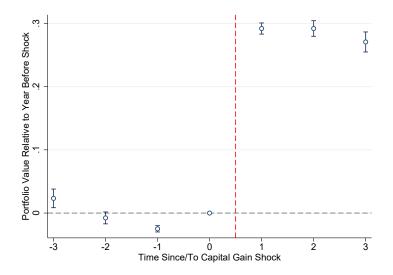

Passive
$$KG_{i,t+k} = \sum_{j} (p_{j,t+k} - p_{j,t+k-1}) \cdot a_{ijt} = \sum_{j} \Delta p_{j,t+k} \cdot a_{ijt}$$

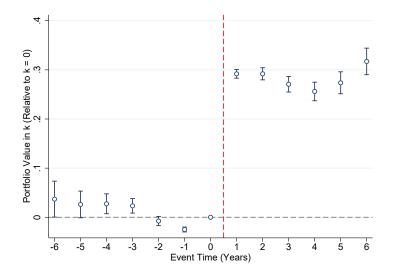
- a_{ijt} : number of stocks of company j held by individual i in t
- Δp_{jt+k} : change in price of stock j between t+k-1 and t+k
- Show that conditional on X price follow are random walk
- For all years $k \in \{-6, ..., 6\}$, regress :

Passive
$$KG_{i,t+k} = \alpha_{t+k}$$
Passive $KG_{i,t+1} + X'\beta$


• X: previous returns and variance of portfolio

Distribution of Residual Passive K Gains



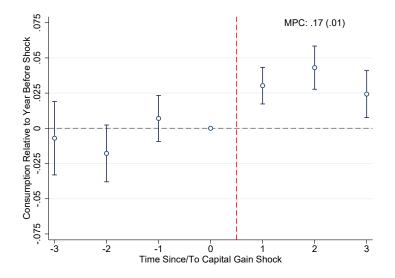

Serial Correlation In Residual Passive K Gains

Predicted Passive Value of Portfolio

True Value of Portfolio

Kolsrud, Landais, Reck, Spinnewijn

For all years
$$k \in \{-6, ..., 6\}$$
, regress :


$$\Delta C_{i,t+k} = \alpha_{t+k}^{C} \text{Passive KG}_{i,t+1} + X'\beta$$

$$\Delta V_{i,t+k} = \alpha_{t+k}^{V} \text{Passive KG}_{i,t+1} + X'\beta$$

$$Cumulative MPC_{t} = \sum_{k=1}^{t} \frac{\hat{\alpha}_{t+k}^{C}}{\hat{\alpha}_{1}^{V}}$$

۲

Average MPCs

	First Stage α_1^V	Reduced Form	IV Result MPC	Placebo Test α_1^P
	B. By Retirement Status			
Non Retired in t	.66	.09	.13	01
	(.01)	(.01)	(.01)	(.02)
Retired in t	.71	.21	.30	.07
	(.03)	(.03)	(.04)	(.05)
	C. By Retirement Age Group			
Premature Retirees	.69	.23	.34	01
	(.04)	(.03)	(.04)	(.07)
Early Retirees	.63	.22	.34	.03
	(.02)	(.02)	(.03)	(.03)
Normal Retirees	.68	.06	.09	.03
	(.01)	(.01)	(.02)	(.02)
Late Retirees	.70	0.01	.01	(.06)
	(.03)	(.03)	(.04)	(.05)

Table: 2SLS ESTIMATES OF MPC OUT OF WEALTH SHOCKS

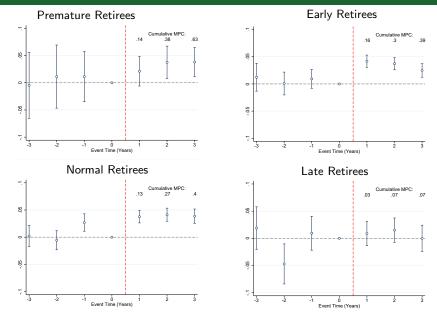
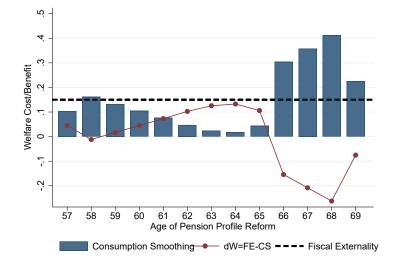


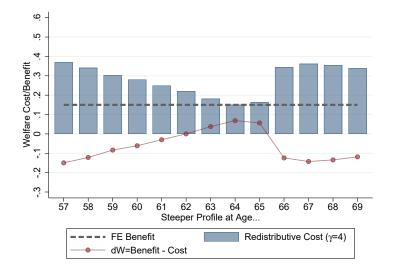
Table: CONSUMPTION SMOOTHING COST OF STEEPER PENSION PROFILE

	Baseline	Sensitivity		Alternative		
	(1)	γ (2)	θ (3)	ΔC (4)	MPC (5)	
		A. Age-	Specific	: Profile Ch	ange: $\frac{CS_{r \leq \tilde{r}} - CS_{r > \tilde{r}}}{CS_{NRA}}$	
$ec{r} \in [57; 60] \ ec{r} \in [61; 63] \ ec{r} \in [64; 65] \ ec{r} \in [66; 69] \end{cases}$.25 .16 .11 .32	.13 .08 .06 .16		.17 .12 .09 .12	39 09 .26 .88	
	B. Swedish Pension Reform: $\Sigma_r \mu_r \frac{CS_r}{CS_{NRA}}$					
	.15	.07	.18	.11	.21	

Back


MPCs by Retirement Age Group

Kolsrud, Landais, Reck, Spinnewijn


46 / 49

Implementation: Insurance Value Only

Implementation: Welfare Weight ($\theta \sim$ Life Expectancy)

	Expected Discounted	Expected Undiscounted		
	Lifetime ($\beta = 0.98$)	Lifetime		
Premature	15.49	23.94		
Early	16.26	25.02		
Normal	16.68	25.54		
Late	16.70	25.46		

Back