
Appendix (For Online Publication Only)

A Appendix: Proofs

Table 1: Composition of Groups for a Change in the Default

Group
Behavior when default is:

Characterization
d0 d1

Always Active (AA) ai(d0) > 0 ai(d1) > 0 ui(x⇤
i )�max{ui(d0), ui(d1)} > �i

Always Passive (PP) ai(d0)  0 ai(d1)  0 ui(x⇤
i )�min{ui(d0), ui(d1)}  �i

Active-to-Passive (AP) ai(d0) > 0 ai(d1)  0 ui(x⇤
i )� ui(d0) > �i � ui(x⇤

i )� ui(d1)

Passive-to-Active (PA) ai(d0)  0 ai(d1) > 0 ui(x⇤
i )� ui(d1) > �i � ui(x⇤

i )� ui(d0)

Note: This table describes how the composition of the four groups described in Section 2 is

determined in terms of the behavioral parameters from Equation (2). The characterization

of these groups in terms of primitives is used in several of the proofs.

Lemma 1:

W (d) = E[ui(x
⇤
i )� ⇡i�i|ai(d) > 0] (1� Fa;d(0)) + E[ui(d)|ai(d)  0]Fa;d(0)

where Fa;d(·) denotes the cumulative density function of ai(d).

Proof: From the definition of the social welfare function we know that W (d) = E[vi(d)]. By

the law of iterated expectations,

W (d) = E[vi(d)|ai(d) > 0]P (ai(d) > 0) + E[vi(d)|ai(d)  0]P (ai(d)  0)

We know from the consumer’s problem and the definition of ai(d) that 1) ai(d)  0 =)

xi(d) = d and 2) ai(d) > 0 =) xi(d) = x⇤
i = argmax ui(x). Substituting these into

vi(d) = wi(xi(d), d) = ui(xi(d))� ⇡i�i1{xi(d) 6= d} gives the result. ⌅

Proposition 1: For any two defaults d0, d1 2 X:

W (d1)�W (d0) = E[ui(x
⇤)�ui(d0)�⇡i�i|PA] p(PA)�E[ui(x

⇤)�ui(d1)�⇡i�i|AP ] p(AP )+E[ui(d1)�ui(d0)|PP ] p(PP ).
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Proof: We know that W (d1) � W (d0) = E[vi(d1) � vi(d0)]. We partition individuals into

the four groups (PA,AP, PP and AA) and apply the law of iterated expectations to express

the change in welfare as a probability-weighted sum over these four groups. As before,

ai(d)  0 =) xi(d) = d and 2) ai(d) > 0 =) xi(d) = x⇤
i = argmax ui(x). In the

PA group, ai(d1) > 0 so vi(d1) = ui(x⇤
i ) � ⇡i�i ,and ai(d0)  0, so vi(d0) = ui(d0). Thus

E[vi(d1)�vi(d0)|PA] = E[ui(x⇤)�ui(d0)�⇡i�i|PA]. Proceeding similarly for the other four

groups and substituting in the resulting expressions yields the desired result. ⌅

Proposition 2: Let X be any interval in R. If d⇤ represents an interior solution to the

optimal default problem, the following first-order condition is satisfied:

0 = W
0
(d⇤) = E[(1� ⇡i)�i|ai(d⇤) = 0, u0

i(d
⇤) < 0] fa|u0<0(0)Fu0(0)

� E[(1� ⇡i)�i|ai(d⇤) = 0, u0
i(d

⇤) > 0] fa|u0<0(0) (1� Fu0(0))

+ E [u0(d⇤) | ai(d⇤) < 0] Fa;d⇤(0)

where fa|u0>0 is the probability density function of ai(d⇤) conditional on u0
i(d

⇤) > 0; Fu0 is the

cumulative density function of u0
i(d

⇤); and, as above, Fa;d⇤ is the cumulative density function

of ai(d⇤).

Proof: One can obtain this result by direct calculation of the derivative of the welfare

function, as divided into active and passive choosers in Lemma 1 (i.e. expressing the expec-

tations as integrals and applying Leibniz rule). One can also obtain the result by plugging in

d1 = d0 +�d in Proposition 1, taking the limit as �d approaches zero, plugging in the defi-

nitions of the primitives, and noting that the PA and AP groups now both have ai(d) = 0,

which implies that ui(x⇤)� ui(d) = �i by construction. ⌅

Proposition 3 Suppose that there exists a penalty default dp 2 X.

(3.1) There exists a threshold ⇡ 2 [0, 1) such that ⇡i  ⇡ for all i implies dp maximizes

social welfare.

Proof: We will prove the existence of a threshold ⇡ 2 [0, 1) such that when ⇡i  ⇡, W (dp) �

W (d) for any d.

Let XA ⇢ X be the subset of X such that for any d 2 XA, P (ai(d)  0) > 0.
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Let d 2 X be an arbitrary default. We know W (dp) � W (d) is trivially true when d is

also a penalty default, i.e. d /2 XA as then W (d) = W (dp) for any ⇡. Next suppose d 2 XA,

so p(PA) > 0. Let ⇡̃(d) = supi2PA(d) ⇡i be the largest possible value of ⇡i for the PA group

for default d. We know from Equation (7) that

W (dp)�W (d) � p(PA){E[ui(x
⇤)� ui(d)|PA]� ⇡̃(d)E[�i|PA]} (13)

The RHS of this expression is a continuous and strictly monotonically decreasing function of

⇡̃(d) (so long as E[�i|PA] > 0, which must be true because PA individuals choose passively).

When ⇡̃(d) = 0, the RHS of this expression is weakly positive because ui(x⇤) � ui(d) for

all i.27 When ⇡̃(d) = 1, the RHS is strictly negative because ui(x⇤) � ui(d) < �i for all

individuals that are passive at d, which is the PA group in this situation. The Intermediate

Value Theorem then implies there is a value of ⇡̃(d), such that we know that the expression

on the RHS of (13) is 0. Denoting this threshold by ⇡(d), we have that W (dp)�W (d) � 0

when ⇡i  ⇡(d) for all i. The result then follows from letting ⇡ = infd2XA ⇡(d), so that

⇡i < ⇡ implies W (dp)�W (d) � 0 for any d. ⌅

(3.2) There exists a threshold ⇡ 2 (0, 1] such that ⇡i � ⇡ for all i implies dp minimizes

social welfare.

Proof: The proof is analogous to the proof of (3.1). For any default d, let ⇡̂(d) = infi2PA(d) ⇡i.

Using equation (7) and a similar Intermediate Value Theorem argument to the above we de-

rive that there is a threshold ⇡(d), such that ⇡i � ⇡(d) implies W (dp) � W (d)  0. The

result then follows from letting ⇡ = supd2XA ⇡(d). ⌅.

Proposition 4 Suppose that X = [xmin, xmax] ✓ R and that:

(A4.1) As-if costs �i are distributed independently of x⇤
i .

(A4.2) Preferences are given by ui(x) = u(x � x⇤
i ) for some map u : R ! R, with

27The expression is strictly positive if we presume x⇤
i is a unique maximum for every

individual. Under this assumption, we know that the penalty default dp is the uniquely

optimal default.
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u0(0) = 0, u00 < 0 and u(c) = u(�c) for any c.

(A4.3) x⇤
i follows a single-peaked and symmetric distribution about some mode xm

.

Under these conditions, there exists a threshold ⇡ 2 (0, 1] such that ⇡i � ⇡ for all i implies

that the optimal default is the default that minimizes opt-outs.

Proof: We provide the proof of the theorem for the case when ⇡i = 1 for all i. It is

straightforward to show that if the theorem holds when ⇡i = 1 for all i, it must hold for

sufficiently high ⇡i.

Starting from the case where ⇡i = 1 for all i, we first prove that W 0(xm) = 0, W 0(d) > 0

for d < xm, and W 0(d) < 0 for d > xm, which implies that W has a unique global maximum

at xm. We then prove that opt-outs are minimized under xm. We start by letting d 2 X be

some default.

Step 1: Characterizing the first and second derivative of W (d).

Let W�(d) = E[vi(d)|�i = �]. By (A4.1) we know that W (d) =
´
� W�(d)f(�)d�. To

prove our result, it therefore suffices to prove that for any fixed �, W 0
�(d) = 0 if d = xm, and

W 00
� (d) < 0 always.

We first introduce some notation involving the function u(). Without loss of generality

u(0) = 0. Taking � as given, by (A4.2) there is some unique value ⇠ such that u(⇠) = u(�⇠) =

�. Note that when x⇤ = d� ⇠, utility at the default is given by u(d� x⇤) = u(d� (d� ⇠)) =

u(⇠) = �, and similarly when x⇤ = d + ⇠, u(d � (d + ⇠)) = � . By (4.2), an individual is

active when x⇤
i  d� ⇠ or x⇤

i � d+ ⇠.

We next characterize W 0
�(d). For illustrative purposes, suppose ⇡i = ⇡ is homogeneous

for all i, which is true when ⇡i = 1 for all i. Welfare for people with given �at d is given by

W�(d) =

d�⇠ˆ
x⇤=�1

�⇡�f(x⇤)dx⇤ +

d+⇠ˆ
x⇤=d�⇠

u(d� x⇤)f(x⇤)dx⇤ +

1̂

x⇤=d+⇠

�⇡�f(x⇤)dx⇤,

Where f(x⇤) is the pdf of x⇤
i . Note that f(x⇤) does not depend on � by (A4.1). Differentiating
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the above with respect to d and applying u(d� x⇤
i ) = � at x⇤

i = d� ⇠ or d+ ⇠, we obtain

W 0
�(d) = �(1� ⇡)[f(d� ⇠)� f(d+ ⇠)] +

d+⇠ˆ
x⇤=d�⇠

u0(d� x⇤)f(x⇤)dx⇤ (14)

This is an analogue of Proposition 2 for some fixed �, with the added structure of (A4.2).

When ⇡ = 1 (A4.4), the first term of this expression, which corresponds to the PA and AP

groups, vanishes, leaving only the PP group, which we now split into those with x⇤ < d and

those with x⇤ > d:

W 0
�(d) =

dˆ
x⇤=d�⇠

u0(d� x⇤)f(x⇤)dx⇤ +

d+⇠ˆ
x⇤=d

u0(d� x⇤)f(x⇤)dx⇤. (15)

Step 2: For any constant ⇣, f(d+ ⇣) � f(d� ⇣) () xm � d.

Suppose xm � d and take a constant ⇣. If xm > d + ⇣ > d � ⇣ , the result immediately

follows from the assumption in (A4.3) that f() is single-peaked. If d + ⇣ � xm � d > d� ⇣

take a constant c such that d+ ⇣ � xm = xm � c. By symmetry about xm, f(c) = f(d+ ⇣).

We know that c < xm, because xm � (d + ⇣)  0. We also know that c � d � ⇣, because

we presumed xm � d. We then have xm � c � d � ⇣. The single-peaked assumption then

implies f(d+ ⇣) = f(c) � f(d� ⇣).

Supposing xm < d and proceeding analogously proves the converse.

Step 3: xm � d () W 0
�(d) � 0.

Starting from equation (15), note that by (A4.2) the first term is positive (u0 > 0 when

x⇤ < d) and the second term is negative (u0 < 0 when x⇤ < d). We can compare the signs of

the two terms in the previous expression by re-writing this equation, using the symmetry of

the utility function, as:

W 0
�(d) =

dˆ
x⇤=d�⇠

u0(d� x⇤)[f(x⇤)� f(x̃)]dx⇤

where x̃ = 2d� x⇤, so that d� x⇤ = �(d� x̃). We know from symmetry that when d = xm,

f(x⇤) = f(x̃), so W 0(xm) = 0.

As u0(d � x⇤) > 0 in the range of integration we use above. When xm > d, the result
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in Step 3 implies that f(x⇤) � f(x̃) for x⇤ 2 [d � ⇣, d], so we know that W 0
�(d) � 0. When

xm < d, the result in step 2 implies that f(x⇤)  f(x̃) for x⇤ 2 [d� ⇣, d], and we know that

W 0
�(d)  0.

Step 3 proves that there is a unique global maximum of W at xm.

Step 4: Setting d = xm minimizes opt-outs.

Let the frequency of opt-outs be given by A(d) = P (ai(d) > 0). Using ⇠ = u�1(�) from

before and letting F be the cdf of x⇤
i , we know that

A(d) = F (d� ⇠) + 1� F (d+ ⇠)

Taking a derivative with respect to d, we have that

A0(d) = f(d� ⇠)� f(d+ ⇠).

Setting d = xm, it is straightforward to verify using (A4.3) that A0(d) = 0 if d = xm,

A0(d) < 0 if d < xm, and A0(d) > 0 if d > xm, which is sufficient to prove that xm minimizes

A(d). ⌅

Proposition 5 In the model with internalities, suppose that

(A5.1) For all i, ui(x) = �↵
2 (x� xa

i )
2

with ↵ > 0.

(A5.2) Normative preferences are given similarly by ui(x) +mi(x) = �↵
2 (x� x⇤

i )
2
.

(A5.3) The error in active choice xa
i � x⇤

i is independent of xa
i and �i.

Then the marginal social welfare effect of a change in the default is given by W
0
0(d)+µX

0
(d),

where W0(d) denotes social welfare without internalities (see Equation (6)), µ = E[µi], and

X(d) = E[xi(d)].

Proof Step 1: (A5.1) and (A5.2) imply that the internality m(x) is linear.

Note that u00
i = �↵ under (A5.1). By (A5.1) we can write

ui(x) =
u00(0)

2
(x� xa

i )
2.

By (A5.2) we can write
ui(x) +mi(x) =

u00(0)

2
(x� x⇤

i )
2.
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Subtracting the previous expression from this one and simplifying we obtain

mi(x) = �u00(x⇤
i � xa

i )x+
u00

2
(x⇤2

i � xa2
i ). (16)

The second term is a constant with respect to x, and may therefore be safely ignored.

Step 2: Proving the result.

The result essentially follows from Equations (10) and the following equation from the

text @E[xi(d)]

@d
= E [xa

i � d|PA] P (PA) + E [d� xa
i |AP ] P (AP ) + P (PP ) (17)

Specifically, apply the linear internality to this equation to obtain:

W
0
(d) = W

0
0(d) + E [µi(xa

i � d) |PA] P (PA)

� E [µi(xa
i � d) |AP ] P (AP )

+ E [µi |PP ] P (PP ).

Next, note that µi = m0
i(x) = �u00(x⇤

i � xa
i ) by (16). Applying (A5.3) then implies that we

can pull out the E[µi] terms.

W
0
(d) = W

0

0(d) + µ{E[xa � d|PA]P (PA)� E[xa � d)|AP ]P (AP ) + P (PP )}

Noting that the term inside curly brackets is the expression for X 0(d) in Equation (17), we

obtain the desired result. ⌅

B Relationship to the Axiomatization of Masatlioglu and Ok (2005)

Masatlioglu and Ok (2005) provides an axiomatic characterization of a model very similar to

the fixed as-if cost model we use. Their paper seeks to rationalize status quo bias; recall that

we showed in Section 1.1 that giving extra utility to the status quo is the same as having

a fixed cost of not choosing the status quo (see Section 1.1). The representation of choices

used by Masatlioglu and Ok (see their equations (3) and (4)) is isomorphic to our own (see

our equation (2), and Section 1.1), with one exception: the fixed as-if cost could depend

on the default in their model. Whether and to what extent � depends on d is difficult to

test empirically, but we know of no evidence suggesting that it does. Nevertheless, here we

discuss further the implications of our restriction that � does not depend on d by relaxing
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it and examining welfare.

Consider a model that is identical to our baseline model except that the fixed cost is

a function of d for each individual, denoted �i(d). It is straightforward to show that the

derivative from Proposition 2 becomes

0 = W 0(d) = E [⇡i�0
i(d)|AA]P (AA)

+ E [ (1� ⇡i)�i(d)|PA]P (PA)

� E [ (1� ⇡i)�i(d)|AP ]P (AP )

+ E[u0(d)|PP ]P (PP ).

(18)

This expression is identical to the expression in Proposition 2 except for the first term. In our

basic model, individuals that are always active for a change in the default do not experience

any change in their welfare. When the fixed costs depend on d and ⇡i > 0, changing the

default can affect the welfare of these decision-makers because . The analogue of equation

(5) is also straightforward to derive for this model.

First, we note that the argument in Proposition 3 (see the proof above) for active choices

being optimal for sufficiently low ⇡ is unaffected by this addition. When as-if costs are not

normative, forcing active choices still leads all individuals to receive x⇤
i without incurring

any costs. Whether forcing active choices minimizes welfare for sufficiently high ⇡ is unclear.

The difficulty is that the penalty default dp could in principle have a lower fixed cost (�(dm))

than other defaults, which can make the penalty default relatively more attractive than some

other defaults.

We know by the same logic as Proposition 4 (proof above) that the last three terms of

(18) will all be zero under (A3.1)-(A3.3) when we minimize opt-outs, and that ignoring the

changes in �(d) for active choosers we would get to a global optimum by minimizing opt-

outs when ⇡i is sufficiently high for all individuals. The additional term in Equation (18)

therefore implies that minimizing opt-outs will not be optimal in general when the change in

�(d) for a marginal change in the default is zero. Intuitively, if increasing the default from

the opt-out minimizing default would reduce the cost incurred by active decision-makers, we
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know the aggregate effect on all other decision-makers is zero (by Proposition 3), so such

an increase in the default would be an improvement on minimizing opt-outs. For a more

extreme example, suppose there is a default d⇤ such that �i(d⇤) = 0 for all i. Such a default

is obviously the optimal default regardless of the ⇡i’s.28

To summarize, our result that active choices are desirable when default effects are purely

driven by behavioral frictions survives the extension implied by the model of Masatlioglu

and Ok (2005). Minimizing opt-outs will still be a good rule of thumb when default effects

are real costs and the dependence between the costs and the default is not too strong, but

if the costs vary strongly with the default it may be possible to improve on the opt-out

minimization rule of thumb.

C Variable Opt-Out Costs

Thus far we have assumed that as-if opt-out costs are constant (for a given individual)

and do not depend on which non-default option the decision-maker selects. An alternative

behavioral model is that defaults “pull” decision-makers towards options near the default in

addition to making them more likely to select the default itself. For example, defaults may

serve as an anchor (Example 1.2.7).

Ultimately, the question of whether defaults effects can be better described by including

variable as-if costs in the model is an empirical question. Empirical evidence, reviewed in

Section 1.2, regularly finds that increases in the default can affect choices far away from the

default, suggesting that fixed costs are likely present. A variable costs model alone, such as

a model of anchoring and adjustment where a higher default tends to lead to higher xi(d),

would not predict, for example, that the fraction of individuals who contribute nothing to

their pension would increase when the default rate of contribution is increased. Whether

adding variable costs gives the model additional explanatory power relative to the fixed-

cost-only model is more difficult to test. One possibility is to look closely at choices around

the default. The fixed costs model with no variable cost predicts a “hole” in the observed

28When ⇡ = 0, both the active choice policy and the default d⇤ are optimal defaults.
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distribution of choices around the default, whereas adding variable costs model predicts a

“hill” around the default when fixed costs are sufficiently low. Still, given that both fixed

and variable costs are plausibly heterogeneous, separately identifying these two components

of decision-makers’ revealed preferences without strong assumptions about distributions of

the two costs is difficult. Here, we show how the inclusion of a variable costs affects the con-

clusions of our main analysis, especially the desirability of active choices versus minimizing

opt-outs.

We focus on the case where X is a real interval. Suppose that instead of (1), individual

behavior is given by

xi(d) = argmax
x2X

ui(xi)� ci(xi � d)� �1{xi 6= d}. (19)

For simplicity, we will assume that ui is single-peaked, with u0
i(x

⇤
i ) = 0 and u00

i < 0 ev-

erywhere. For this extension, we assume that the as-if cost associated with choosing a

non-default option increases the further the chosen option is from d, so that c0i(xi � d) � 0

when xi � d > 0, and c0i(xi � d)  0 when xi � d < 0. The as-if cost function is twice

differentiable, with c00 � 0. We normalize c(0) to zero. In this model individuals choose the

default when passive, or x̃(d) = argmaxui(xi) � ci(xi � d) when active. The individual is

active if ãi(d) ⌘ [ui(x̃i(d))� ci(x̃i(d)� d)]� ui(d)� �i > 0.

Similar to before, welfare is given by

wi(x) = ui(x)� ⇢ici(x� d)� ⇡i�i1{xi 6= d}, (20)

where ⇢i denotes the normative relevance of variable costs ci(·) and ⇡i the normative relevance

of fixed costs as before. Indirect utility and social welfare are also defined similarly to before.

Given any change in the default, we can divide individuals into four groups as before,

except now these groups are based on ãi(d). Taking a derivative of the welfare function with

respect to d, we have that the necessary condition from Proposition 2 becomes, with the

addition of variable costs,
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0 = W 0(d) = E
h
⇢ic0i + (1� ⇢i)c0i

c00i
c00i �u00

i

���AA
i
P (AA)

+ E [ (1� ⇢)c+ (1� ⇡i)�i|PA]P (PA)

� E [ (1� ⇢)c+ (1� ⇡i)�i|AP ]P (AP )

+ E[u0(d)|PP ]P (PP ).

(21)

where all components involving ci(·) are evaluated at x = x̃(d).

Adding variable costs changes this expression in two ways. First, the always-active

choosers (AA) are affected by a change in the default. The sign of the welfare effect on

an always-active chooser is positive if and only if x⇤
i < d. For an individual with x⇤

i < d,

we will have that x⇤
i < xi(d) < d, and an increase in the default makes it costlier to choose

an option close to x⇤
i . The ⇢ic0i term of the welfare effect for members of the AA group in

Equation 20 corresponds to the direct welfare effect of increasing this cost. Such an individ-

ual also increases xi in response to this change in costs: it is straightforward to show that

x̃0
i(d) =

c00i
c00i �u00

i
2 [0, 1). The second term of the welfare effect for the AA group corresponds to

the welfare impact of this change in behavior.29 As before, when as-if costs are fully norma-

tively relevant for all individuals, ⇢i = 1, and the envelope theorem eliminates the indirect

welfare effect from the behavioral response. However, when ⇢i < 1, the individual over-reacts

to the increase in costs, reducing their welfare. The opposite intuition applies when x⇤
i > d;

such individuals in the AA group are made better off by an increase in the default. The

second addition to the welfare calculation is the extra variable cost incurred by marginally

active decision-makers in the PA and AP groups. As it changes welfare discretely when the

individual switches between choosing actively and choosing passively, this component affects

welfare in exactly the same fashion as the fixed cost.

Our key result that forcing active choice is optimal when default effects are driven purely

by behavioral frictions will still be true in this model, but properly examining an active

choice policy requires subtle reasoning here. In this model, setting an extreme default so

that everyone opts out will not necessarily be equivalent to forcing active choices directly.

29Note that the behavioral response is x̃0(d) = 0 when costs are linear, i.e. c00 = 0.
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One might naturally suppose that when forcing active choices, the planner sets no anchor,

which eliminates the variable costs, whereas when a penalty default acts as an anchor, the

variable costs will matter for behavior and welfare. Suppose there is a policy that forces

decision-makers to make active choices and eliminates variable costs (i.e. it does not set an

anchor). It is straightforward to show that such a policy will be globally optimal when ⇡i is

sufficiently small for all individuals (regardless of ⇢i), exactly as in Proposition 3. However,

whether such a policy becomes extremely undesirable when ⇡i and ⇢i are sufficiently high

is not clear in this model, because the policy that forces active choices also eliminates the

variable costs and this can improve welfare. Conversely, a penalty default will surely minimize

welfare when ⇡i and ⇢i are sufficiently high, but due to the large distortions on active choices

it may have through the variable costs, it may not be optimal when ⇡i and ⇢i are large.

By a very similar procedure to the one we use in Proposition 4, one can show that

minimizing opt-outs is optimal when ⇡i and ⇢i are sufficiently large, under some regularity

conditions. Specifically, we could maintain Assumptions (A4.1)-(A4.3), and add the assump-

tion that the variable cost function is the same for all individuals, ci(xi � d) = c(xi � d).

Under these assumptions minimizing opt-outs will still be globally optimal when default

effects are driven by real components of individual welfare.

D Additional Details from Empirical Application

This Appendix provides additional results for our empirical application. First, we show in

Figure 4 how the marginal internalities from Figure 3 map to the mean optimal savings

rate, E[x⇤
i ]. At µ = 0, the mean savings rate corresponds to the observed savings rate when

we simulate the model under the active choice policy, which is a 7 percent contribution

not including the employer matching contributions, or just over 9 percent when we add in

the match. As µ reaches larger values, the optimal savings rate increases and approaches

the maximum 15% contribution asymptotically. Interestingly, as µ increases, the optimal

default in Figure 3a approaches the maximum contribution more quickly than the mean

optimal savings rate does. This finding might seem counter-intuitive at first, but it occurs
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because there is a mass of individuals contributing 15%, and the mass grows as µ increases.

Like the 6% default before, this mass point is an attractive default because it gives a large

number of people their exactly ideal option and it leads few people to opt out (see BFP

Theorem 2).

Next, we show some results from two other employers, labeled “Company 1” and “Com-

pany 2” in BFP, along with additional details on the parameters used to calculate welfare

in the model. In the model used here, the difference in distributions of contributions at

different companies is used to identify differences in µ⇢, which governs overall preferences

over savings rates. Different companies also have different matching contribution rates. All

other parameters are the same across companies. A complete table of parameter values is

contained in Table 2.

Figure 5 repeats Figures 2 and 4 in the body of the text for Company 1. Figure 6 does

the same for Company 2. We can see that apart from relatively minor differences, we obtain

the same results for all three companies. The most noticeable difference is actually that the

higher, 100 percent match rate at company 1 makes defaults lower than 6 percent much less

desirable, which is intuitive.
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Figure 4: Marginal Internalities and Mean Optimal Contribution Rates
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Figure 5: Results for Company 1

(a) Equivalent variation over defaults, by ⇡
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Figure 6: Results for Company 2

(a) Equivalent variation over defaults, by ⇡
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Table 2: Model Parameters and Plan Characteristics

Parameter Value

Mean savings utility weight, µ⇢, company 1 0.2150

Mean savings utility weight, µ⇢, company 2 0.1313

Mean savings utility weight, µ⇢, company 3 0.1570

Standard deviation of savings utility weight, � 0.0910

Savings shift parameter, ↵ 0.1340

Fraction with zero as-if costs, �1 0.4011

As-if costs distribution parameter, �2 11.81

Maximum matched contribution (all companies) 0.06

Employer match rate, company 1 1.0

Employer match rate, company 2 0.5

Employer match rate, company 3 0.5
Note: this table reports the parameter values we use in our empirical illustration. The

parameter values come from Table 2 of Bernheim, Fradkin and Popov (2015), for the “basic

model.”


