Optimal Audit Policy with Prediction Uncertainty

Aviv Caspi, Stanford University Jacob Goldin, University of Chicago Daniel E. Ho, Stanford University Daniel Reck, University of Maryland

NTA 2023

Nov 2 2023

Motivation: How to Use Machine Learning Predictions?

- Tax authorities use machine learning and other tools to predict audit outcomes
- How can machine learning predictions inform optimal audits? How do we account for the fact that predictions are uncertain?

Motivation: How to Use Machine Learning Predictions?

- Tax authorities use machine learning and other tools to predict audit outcomes
- How can machine learning predictions inform optimal audits? How do we account for the fact that predictions are uncertain?
- Uncertainty interacts with distributional concerns: e.g. targeting audits toward those with income > \$400k w/o observing true income
- Feasibility constraint: audits must be selected based on information observable to government

Motivation: How to Use Machine Learning Predictions?

- Tax authorities use machine learning and other tools to predict audit outcomes
- How can machine learning predictions inform optimal audits? How do we account for the fact that predictions are uncertain?
- Uncertainty interacts with distributional concerns: e.g. targeting audits toward those with income > \$400k w/o observing true income
- Feasibility constraint: audits must be selected based on information observable to government
- We develop a sufficient statistics approach to optimal audit selection based on predicted audit outcomes to address these questions.

- Setup: Taxpayer and Government Information
- Ø Derive Suff Stat Characterization for Baseline Static Model
- Section: New Information
- Stension: Dynamic Information Effects

- Theories of Optimal Audit Selection: Reinganum & Wilde, 1985; Sanchez & Sobel, 1993; Cremer & Gahvari 1996; Mookherjee & Png 1989; Graetz, Reinganum & Wilde 1986
 - **Our Contribution:** richer (high-dimensional) information environment, sufficient statistics (implicit) characterization of optimum
- Optimal Tax Systems and Enforcement: Mayshar 1991, Slemrod & Yitzhaki 1996, 2001; Kleven & Kreiner 2006; Hendren 2016; Keen & Slemrod 2017; Hendren & Sprung-Keyser 2020; Boning et al 2023
 - **Our contribution:** focus on return-level audit selection, characterize optimal audit rate (c.f. Saez 2001 for optimal tax rates)
- Machine learning and policy problems: Kleinberg et al 2015; Black et al., 2022; Henderson et al., 2023; Elzayn et al., 2023
 - Our contribution: welfarist objective, connect to optimal tax theory

Setup and Order of Events

- Individuals, endowed with private information (their type $\theta \in \mathbb{R}^N$) file a return reporting information ($\hat{\theta} \in \mathbb{R}^N$) to the government and remit taxes
 - True tax liability $\mathcal{T}(\theta)$, reported liability $\mathcal{T}(\hat{\theta})$
 - Reported liability maximizes expected utility given risk of an audit
 - Risk of audit depends on (unobserved) gov't information and self-report
 - Penalties, tax schedule, audit procedures, true incomes all held fixed

- Individuals, endowed with private information (their type $\theta \in \mathbb{R}^N$) file a return reporting information ($\hat{\theta} \in \mathbb{R}^N$) to the government and remit taxes
- **②** The government observes taxpayer reports $\hat{\theta}$ and additional private signal $\sigma \in \mathbb{R}^M$ (e.g. third-party/whistleblower info), and implements an audit selection rule $A(\hat{\theta}, \sigma)$.

 $\, \bullet \,$ Individuals do not observe government's signal $\sigma \,$

- Individuals, endowed with private information (their type $\theta \in \mathbb{R}^N$) file a return reporting information ($\hat{\theta} \in \mathbb{R}^N$) to the government and remit taxes
- **②** The government observes taxpayer reports $\hat{\theta}$ and additional private signal $\sigma \in \mathbb{R}^M$ (e.g. third-party/whistleblower info), and implements an audit selection rule $A(\hat{\theta}, \sigma)$.
- Sevenues are rebated lump-sum, ex post payoffs are realized

- Individuals, endowed with private information (their type $\theta \in \mathbb{R}^N$) file a return reporting information ($\hat{\theta} \in \mathbb{R}^N$) to the government and remit taxes
- **②** The government observes taxpayer reports $\hat{\theta}$ and additional private signal $\sigma \in \mathbb{R}^M$ (e.g. third-party/whistleblower info), and implements an audit selection rule $A(\hat{\theta}, \sigma)$.
- Sevenues are rebated lump-sum, ex post payoffs are realized

We characterize the socially optimal audit selection rule in a rational expectations (Bayesian) equilibrium of this game

- \implies Distribution $f(\theta, \sigma)$ common knowledge, *aggregate learning* deferred to future work
- Agents anticipate others' actions correctly given their information

- Individuals know their type but are uncertain about what the government knows \implies make decisions given beliefs $f(\sigma|\theta)$
- Government makes decisions based on $f(\theta|\hat{\theta},\sigma)$
 - Non-degenerate when there is pooling of types in reporting behavior, e.g. when non-compliant types attempt to appear compliant

- Individuals know their type but are uncertain about what the government knows \implies make decisions given beliefs $f(\sigma|\theta)$
- Government makes decisions based on $f(\theta|\hat{\theta},\sigma)$
- Audit selection rule $A(\hat{\theta}, \sigma)$ maps gov't info to an audit rate in [0, 1]
 - \implies where $A(\hat{ heta},\sigma)\in(0,1)$, some randomness in audit selection

- Individuals know their type but are uncertain about what the government knows \implies make decisions given beliefs $f(\sigma|\theta)$
- Government makes decisions based on $f(\theta|\hat{\theta}, \sigma)$
- Audit selection rule $A(\hat{\theta}, \sigma)$ maps gov't info to an audit rate in [0, 1]
- Individuals form beliefs about their audit probability given their self-report:

$$p_{\theta}(\hat{\theta}, A) = \int_{\sigma} A(\hat{\theta}, \sigma) dF(\sigma|\theta)$$

- Individuals know their type but are uncertain about what the government knows \implies make decisions given beliefs $f(\sigma|\theta)$
- Government makes decisions based on $f(\theta|\hat{\theta}, \sigma)$
- Audit selection rule $A(\hat{\theta}, \sigma)$ maps gov't info to an audit rate in [0, 1]
- Individuals form beliefs about their audit probability given their self-report:

$$p_{\theta}(\hat{\theta}, A) = \int_{\sigma} A(\hat{\theta}, \sigma) dF(\sigma|\theta)$$

• A perturbation to audit selection rule $dA(\hat{\theta}, \sigma)$ affects individual θ 's audit risk according to

$$dp_{\theta}(\hat{\theta},\sigma) = \int_{\sigma} dA(\hat{\theta},\sigma) dF(\sigma|\theta)$$

Illustration: Audit Rule with Simpler Setup

Illustration: Individual Beliefs

Illustration: Individual Behavior

Caspi,	Goldin,	Ho,	Reck
--------	---------	-----	------

Local Perturbation of Audit Selection Rule

Resulting Perturbation of Audit Probability

Behavioral Responses

For an arbitrary perturbation $dA(\hat{\theta}, \sigma)$

$$dp_{\theta}(\hat{\theta}) = \int_{\sigma} dA(\hat{\theta}, \sigma) f(\sigma|\theta)$$

The effect on individual welfare $v_{ heta}(p_{ heta})$ is

$$dv_{\theta} = [u_{\theta}(c_{\theta}^{1}) - u_{\theta}(c_{\theta}^{0})]dp_{\theta}(\hat{\theta}) \approx -EMU_{\theta}[R_{\theta} + H_{\theta}]dp_{\theta}(\hat{\theta})$$

• Behavioral response $d\hat{\theta}$ is second-order for private welfare (envelope theorem)

For an arbitrary perturbation $dA(\hat{\theta}, \sigma)$

$$dp_{\theta}(\hat{\theta}) = \int_{\sigma} dA(\hat{\theta}, \sigma) f(\sigma|\theta)$$

The effect on individual welfare $v_{\theta}(p_{\theta})$ is

$$dv_{\theta} = [u_{\theta}(c_{\theta}^{1}) - u_{\theta}(c_{\theta}^{0})]dp_{\theta}(\hat{\theta}) \approx -EMU_{\theta}[R_{\theta} + H_{\theta}]dp_{\theta}(\hat{\theta})$$

• Behavioral response $d\hat{\theta}$ is second-order for private welfare (envelope theorem)

1

- Direct Private Welfare Loss: audit revenues (R_{θ}) + private (compliance) cost of audit H_{θ}
- Individual values these losses at expected marginal utility of consumption EMU_{θ}

Social Welfare

The government aims to maximize generalized utilitarian welfare

$$W(A) = \int_{ heta} \psi_{ heta} v(p_{ heta}) dF(heta)$$

subject to Government Budget Constraint

$$GBC \equiv \int_{\theta} \int_{\sigma} T(\hat{\theta}_{\theta}) + A(\hat{\theta}_{\theta}, \sigma) (R_{\theta} - C_{\theta}) dF(\sigma|\theta) dF(\theta) \ge G$$

where C_{θ} is the admin cost of an audit.

Social Welfare

The government aims to maximize generalized utilitarian welfare

$$W(A) = \int_{ heta} \psi_{ heta} v(p_{ heta}) dF(heta)$$

subject to Government Budget Constraint

$$GBC \equiv \int_{\theta} \int_{\sigma} T(\hat{\theta}_{\theta}) + A(\hat{\theta}_{\theta}, \sigma) (R_{\theta} - C_{\theta}) dF(\sigma|\theta) dF(\theta) \ge G$$

where C_{θ} is the admin cost of an audit. For a marginal perturbation dA

$$dGBC = \underbrace{(R_{\theta} - C_{\theta})dp_{\theta}}_{\text{Direct Revenue Effect}} + \underbrace{\left(\frac{dT_{\theta}}{dp_{\theta}} + p_{\theta}\frac{dR_{\theta}}{dp_{\theta}}\right)dp_{\theta}}_{\text{Behavioral Revenue Effect}}$$

Social Welfare

The government aims to maximize generalized utilitarian welfare

$$W(A) = \int_{ heta} \psi_{ heta} v(p_{ heta}) dF(heta)$$

subject to Government Budget Constraint

$$GBC \equiv \int_{\theta} \int_{\sigma} T(\hat{\theta}_{\theta}) + A(\hat{\theta}_{\theta}, \sigma) (R_{\theta} - C_{\theta}) dF(\sigma|\theta) dF(\theta) \ge G$$

where C_{θ} is the admin cost of an audit. For a marginal perturbation dA

$$dGBC = \underbrace{(R_{\theta} - C_{\theta})dp_{\theta}}_{\text{Direct Revenue Effect}} + \underbrace{\left(\frac{dT_{\theta}}{dp_{\theta}} + p_{\theta}\frac{dR_{\theta}}{dp_{\theta}}\right)dp_{\theta}}_{\text{Behavioral Revenue Effect}}$$

Assuming a linear penalty, we can just track the change in T:

$$R_{ heta} = (1+
ho)[T(\hat{ heta}^*) - T(\hat{ heta})] \implies dR_{ heta} = -(1+
ho)dT_{ heta}$$

Welfare Effect of a Local Perturbation

With social welfare weights $g_{\theta} = \frac{\psi_{\theta} EMU_{\theta}}{\lambda}$, i.e. normalizing by $\lambda = E_{\theta}[EMU_{\theta}]$, the social welfare effect of a perturbation is

$$dW = \int_{\theta} dp_{\theta} \left[R_{\theta} - C_{\theta} - g_{\theta} (R_{\theta} + H_{\theta}) + \frac{dT_{\theta}}{dp_{\theta}} (1 - p_{\theta} (1 + \rho)) \right] dF(\theta)$$

With social welfare weights $g_{\theta} = \frac{\psi_{\theta} EMU_{\theta}}{\lambda}$, i.e. normalizing by $\lambda = E_{\theta}[EMU_{\theta}]$, the social welfare effect of a perturbation is

$$dW = \int_{\theta} dp_{\theta} \left[R_{\theta} - C_{\theta} - g_{\theta} (R_{\theta} + H_{\theta}) + \frac{dT_{\theta}}{dp_{\theta}} (1 - p_{\theta} (1 + \rho)) \right] dF(\theta)$$

Express this in terms of conditional means, covariances, and the *elasticity of reported tax due* wrt p, ε_{θ}

$$dW = \int_{\sigma} \int_{\hat{\theta}} dA(\hat{\theta}, \sigma) [\overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} \\ -Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma) + T(\hat{\theta})\overline{\varepsilon} \frac{1 - A(1 + \rho)}{A}] dF(\hat{\theta}|\sigma) dF(\sigma)$$

where $\overline{R}(\hat{\theta}, \sigma) = \int_{\theta} R_{\theta} dF(\theta|\hat{\theta}, \sigma)$ is the conditional mean of audit revenue given the government's information and other terms are similar conditional means.

$$dW = \int_{\sigma} \int_{\hat{\theta}} dA(\hat{\theta}, \sigma) [\overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} \\ - Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma) + T(\hat{\theta})\overline{\varepsilon} \frac{1 - A(1 + \rho)}{A}] dF(\hat{\theta}|\sigma) dF(\sigma)$$

Covariance between audit outcomes and welfare weight is probably negative \implies higher audit rates under more uncertainty

• Audit recovers more revenue than expected \implies taxpayer has higher income \implies lower welfare weight than expected

$$dW = \int_{\sigma} \int_{\hat{\theta}} dA(\hat{\theta}, \sigma) [\overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} - Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma) + T(\hat{\theta})\overline{\varepsilon} \frac{1 - A(1 + \rho)}{A}] dF(\hat{\theta}|\sigma) dF(\sigma)$$

Covariance between audit outcomes and welfare weight is probably negative \implies higher audit rates under more uncertainty

- Audit recovers more revenue than expected \implies taxpayer has higher income \implies lower welfare weight than expected
- (OR compliance-based welfare weight imposed ex ante? see paper)
- Expressing welfare weight as a function of audit revenues $g^*(R_{ heta})$, we have

$$dW \approx \int_{\sigma} \int_{\hat{\theta}} dA(\hat{\theta}, \sigma) [\overline{R}(1 - g^*(\overline{R})) - g^*(\overline{R})\overline{H} - \overline{C} \\ - \frac{dg^*(\overline{R})}{dR} Var(R_{\theta}|\hat{\theta}, \sigma) + T(\hat{\theta})\overline{\varepsilon} \frac{1 - A(1 + \rho)}{A}] dF(\hat{\theta}|\sigma) dF(\sigma)$$

$$dW = \int_{\sigma} \int_{\hat{\theta}} dA(\hat{\theta}, \sigma) [\overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} \\ -Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma) + T(\hat{\theta})\overline{\varepsilon} \frac{1 - A(1 + \rho)}{A}] dF(\hat{\theta}|\sigma) dF(\sigma)$$

- ε_{θ} is the effect of a marginal level increase in the probability of audit
- $\overline{\varepsilon}$ is a conditional mean of ε_{θ} , weighted by exposure to the perturbation $\frac{dp_{\theta}}{F[dA]}$.
- Note we assume local incentive compatibility is sufficient to ensure global incentive compatibility <= convexity, as in optimal tax theory

Corner Solutions

- Optimality: for any feasible perturbation dA, $dW \leq 0$.
- Simpler notation: all direct effects denoted $\overline{D}(\hat{\theta}, \sigma)$

$$\overline{D} \equiv \overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} - Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma)$$

Corner Solutions

- Optimality: for any feasible perturbation dA, $dW \leq 0$.
- Simpler notation: all direct effects denoted $\overline{D}(\hat{\theta}, \sigma)$

$$\overline{D} \equiv \overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} - Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma)$$

• Corner solution 1: $dW \ge 0$ at 100% audit rate

$$A^*(\hat{ heta},\sigma) = 1 \iff \overline{D} > T(\hat{ heta})
ho\overline{arepsilon}$$

• Positive direct effect is not sufficient for 100% audit rate because deterrence reduces penalty collections at a high audit rate

Corner Solutions

- Optimality: for any feasible perturbation dA, $dW \leq 0$.
- Simpler notation: all direct effects denoted $\overline{D}(\hat{\theta}, \sigma)$

$$\overline{D} \equiv \overline{R}(1 - \overline{g}) - \overline{g}\overline{H} - \overline{C} - Cov(g_{\theta}, R_{\theta} + H_{\theta}|\hat{\theta}, \sigma)$$

• Corner solution 1: $dW \ge 0$ at 100% audit rate

$$A^*(\hat{ heta},\sigma) = 1 \iff \overline{D} > T(\hat{ heta})
ho\overline{arepsilon}$$

- Positive direct effect is not sufficient for 100% audit rate because deterrence reduces penalty collections at a high audit rate
- Corner solution 0: $dW \le 0$ at 0% audit rate (re-express behavioral resp using semi-elasticity $\eta \equiv \frac{dT}{dp} \frac{1}{T}$):

$$A^*(\hat{\theta},\sigma) = 0 \iff \overline{D} < -T(\hat{\theta})\overline{\eta}$$

 Could arise w/high audit costs vs revenue, high welfare weights, and/or weak deterrence effects

Caspi, Goldin, Ho, Reck

Optimal Audit Rate at an Interior Optimum

If neither corner condition is met, we must have

$$dW = 0 \implies A^*(\hat{\theta}, \sigma) = \frac{T(\hat{\theta})\overline{\varepsilon}}{T(\hat{\theta})\overline{\varepsilon}(1+\rho) - \overline{D}}.$$

Our sufficient statistics for evaluating optimality of audit selection for *any group that is distinguishable with gov't information*:

- Predicted (mean) audit revenues and admin/private costs
- Welfare weight at predicted audit outcome etc.
- Uncertainty: sensitivity of welfare weight to audit outcomes, variance of audit revenues/private costs
- Reported tax due
- Deterrence elasticity of reported tax due

Optimal Audit Rate at an Interior Optimum

If neither corner condition is met, we must have

$$dW = 0 \implies A^*(\hat{\theta}, \sigma) = \frac{T(\hat{\theta})\overline{\varepsilon}}{T(\hat{\theta})\overline{\varepsilon}(1+\rho) - \overline{D}}.$$

Our sufficient statistics for evaluating optimality of audit selection for *any group that is distinguishable with gov't information*:

- Predicted (mean) audit revenues and admin/private costs
- Welfare weight at predicted audit outcome etc.
- Uncertainty: sensitivity of welfare weight to audit outcomes, variance of audit revenues/private costs
- Reported tax due
- Deterrence elasticity of reported tax due

Note we have derived *implicit* characterizations of *whether status quo is optimal, holding all other policies fixed* (c.f. Saez 2001).

- ullet Now suppose the government can observe some additional information in σ
- Result 1: How optimal audit rates change
 - Where new information is discriminating, increase audits where gains are high and decrease them elsewhere
 - Express this in terms of how mean predictions (e.g. \overline{R}) and covariance change.

- ullet Now suppose the government can observe some additional information in σ
- Result 1: How optimal audit rates change
 - Where new information is discriminating, increase audits where gains are high and decrease them elsewhere
 - Express this in terms of how mean predictions (e.g. \overline{R}) and covariance change.
- Result 2: Effect on social welfare of new information
 - Proportional to amount of variance in individual-specific welfare effect of a marginal audit that is *explained by new information* related to partial R^2
 - Quantifies the social value of new info under optimal selection, could be traded off against the costs of collecting/using information.

Sketch of Extension 2: Dynamic Information Effects

- Audits reveal information about future periods \implies an audit in t modifies σ_{t+1} . How does this modify optimal audits in t?
- We model the case where information is revealed *exclusively about the audited individual* (and individuals and gov't know what is revealed)
 - Private direct effect now includes effect on NPV of future consumption
 - Fiscal direct effect includes effect on future gov't budget

Sketch of Extension 2: Dynamic Information Effects

- Audits reveal information about future periods \implies an audit in t modifies σ_{t+1} . How does this modify optimal audits in t?
- We model the case where information is revealed *exclusively about the audited individual* (and individuals and gov't know what is revealed)
 - Private direct effect now includes effect on NPV of future consumption
 - Fiscal direct effect includes effect on future gov't budget

 - Also incorporated in Boning et al (2023) (labelled a deterrence effect)

Sketch of Extension 2: Dynamic Information Effects

- Audits reveal information about future periods \implies an audit in t modifies σ_{t+1} . How does this modify optimal audits in t?
- We model the case where information is revealed *exclusively about the audited individual* (and individuals and gov't know what is revealed)
 - Private direct effect now includes effect on NPV of future consumption
 - Fiscal direct effect includes effect on future gov't budget
 - Both of these include the effect of info on future tax payments
 - \leftarrow subject of empirical literature (e.g. DeBacker et al 2018)
 - Also incorporated in Boning et al (2023) (labelled a deterrence effect)
- Broader insight: how we value information revealed by period-*t* audits depends on for whom that information is relevant
 - e.g. information spillovers through preparer networks, business ownership networks
 - More research needed to understand which information effects matter.

Conclusion & Next Steps

- We derive a sufficient statistics characterization of the optimal audit selection rule with a welfarist objective
- Admits a test of the optimality of increasing/decreasing audit rates for *any group of individuals that is observable to the government.*

Conclusion & Next Steps

- We derive a sufficient statistics characterization of the optimal audit selection rule with a welfarist objective
- Admits a test of the optimality of increasing/decreasing audit rates for *any group of individuals that is observable to the government.*
- We used this to quantify the value of new information.
- We extended it to account for dynamic effects of audits.

Conclusion & Next Steps

- We derive a sufficient statistics characterization of the optimal audit selection rule with a welfarist objective
- Admits a test of the optimality of increasing/decreasing audit rates for *any group of individuals that is observable to the government.*
- We used this to quantify the value of new information.
- We extended it to account for dynamic effects of audits.
- As with other sufficient statistics characterizations, we found an *implicit* characterization *holding all other policies fixed*
- Next step: implement our sufficient statistics characterization with machine-learning predictions trained on real audit data
 - Requires circumspection around welfare weights, deterrence elasticity
 - Imposing modest structure on deterrence could be useful here too (e.g. elasticity must be zero for compliant types...)