The Welfare Economics of Reference Dependence

Daniel Reck, University of Maryland Arthur Seibold, University of Mannheim

March 2024

Motivation

- Individuals often evaluate options relative to a reference point, especially seeking to avoid losses
 - Evidence from classic experiments (e.g. Kahneman & Tversky 1979; Kahneman, Knetsch, & Thaler 1990)
 - Field evidence: **labor supply** (Camerer et al. 1997, Fehr & Goette 2007, Crawford & Meng 2011), **responses to taxation** (Homonoff 2018, Rees-Jones 2018), **job search** (DellaVigna et al 2017), **retirement** (Seibold 2021; Lalive et al 2023)

 \rightarrow reference dependence shapes responses to policy reforms

- **Open question:** How to evaluate the welfare effects of policy reforms in the presence of reference dependence?
 - Evaluating price instruments/taxes
 - Evaluating policies that influence reference points

Motivation

- Individuals often evaluate options relative to a reference point, especially seeking to avoid losses
 - Evidence from classic experiments (e.g. Kahneman & Tversky 1979; Kahneman, Knetsch, & Thaler 1990)
 - Field evidence: **labor supply** (Camerer et al. 1997, Fehr & Goette 2007, Crawford & Meng 2011), **responses to taxation** (Homonoff 2018, Rees-Jones 2018), **job search** (DellaVigna et al 2017), **retirement** (Seibold 2021; Lalive et al 2023)

 \rightarrow reference dependence shapes responses to policy reforms

- **Open question:** How to evaluate the welfare effects of policy reforms in the presence of reference dependence?
 - Evaluating price instruments/taxes
 - Evaluating policies that influence reference points

Challenges

- 1. Normative ambiguity: Is reference dependence a bias or a preference? (see e.g. O'Donoghue & Sprenger 2018)
 - **Our approach**: parametrize as normative judgment, identify map to welfare conclusions (Goldin & Reck 2022)
- 2. Positive ambiguity: many formulations of reference-dependent payoffs proposed in prior literature
 - Prior focus on tractability & identification, not welfare
 - Our approach: derive sufficient statistics
 - Reduced-form characterization of welfare under minimal conditions
 - Relate first-order determinants of welfare to parametric payoff formulations and empirical bunching designs

Challenges

- 1. Normative ambiguity: Is reference dependence a bias or a preference? (see e.g. O'Donoghue & Sprenger 2018)
 - **Our approach**: parametrize as normative judgment, identify map to welfare conclusions (Goldin & Reck 2022)
- 2. Positive ambiguity: many formulations of reference-dependent payoffs proposed in prior literature
 - Prior focus on tractability & identification, not welfare
 - Our approach: derive sufficient statistics
 - Reduced-form characterization of welfare under minimal conditions
 - Relate first-order determinants of welfare to parametric payoff formulations and empirical bunching designs

 Evaluate welfare effects of pension reforms: Normal Retirement Age as reference point + financial incentives

Preview of Results: Theory

- We decompose welfare effects of changes to reference points and prices into **direct effects** and **behavioral effects**
 - Normative judgments determine which effects matter
 - Payoff formulation determines the sign of the effects
- Propose flexible **reduced form** of reference-dependent payoffs capturing key features relevant for welfare
 - Encompasses wide range of formulations from prior literature
 - Two key parameters govern (i) strength and (ii) direction of loss aversion
- Show that reduced-form parameters are
 - **Sufficient statistics** for welfare (together with a price elasticity)
 - Empirically identified by bunching designs

Preview of Results: Theory

- We decompose welfare effects of changes to reference points and prices into **direct effects** and **behavioral effects**
 - Normative judgments determine which effects matter
 - Payoff formulation determines the sign of the effects
- Propose flexible **reduced form** of reference-dependent payoffs capturing key features relevant for welfare
 - Encompasses wide range of formulations from prior literature
 - Two key parameters govern (i) strength and (ii) direction of loss aversion
- Show that reduced-form parameters are
 - **Sufficient statistics** for welfare (together with a price elasticity)
 - Empirically identified by bunching designs

Preview of Results: Theory

- We decompose welfare effects of changes to reference points and prices into **direct effects** and **behavioral effects**
 - Normative judgments determine which effects matter
 - Payoff formulation determines the sign of the effects
- Propose flexible **reduced form** of reference-dependent payoffs capturing key features relevant for welfare
 - Encompasses wide range of formulations from prior literature
 - Two key parameters govern (i) strength and (ii) direction of loss aversion
- Show that reduced-form parameters are
 - **Sufficient statistics** for welfare (together with a price elasticity)
 - Empirically identified by bunching designs

Preview of Results: Empirical Application

Evaluate welfare effects of pension reforms using German administrative data

- Consider two types of reforms:
 - Shift Normal Retirement Age (NRA) \implies influence reference points
 - ${\scriptstyle \bullet}\,$ Change financial retirement incentives \implies price change
- Find positive welfare effects of increasing NRA (locally)
 - Crucial: bunching estimation suggests strong loss aversion over leisure ⇒ increasing NRA *lowers* reference points
 - Optimal NRA disciplined by potential consumption reference dependence
- Welfare effects of subsidizing later retirement ambiguous

Preview of Results: Empirical Application

Evaluate welfare effects of pension reforms using German administrative data

- Consider two types of reforms:
 - Shift Normal Retirement Age (NRA) \implies influence reference points
 - $\bullet\,$ Change financial retirement incentives $\implies\,$ price change
- Find positive welfare effects of increasing NRA (locally)
 - Crucial: bunching estimation suggests strong loss aversion over leisure ⇒ increasing NRA *lowers* reference points
 - Optimal NRA disciplined by potential consumption reference dependence
- Welfare effects of subsidizing later retirement ambiguous

Literature

- 1. Behavioral welfare economics: Chetty et al. (2009), Mullainathan et
 - al. (2012), Allcott & Taubinsky (2015), Allcott et al. (2019), List et al. (2023)
 - Normative ambiguity: Bernheim & Rangel (2009), Goldin & Reck (2022)
- Reference-dependent preferences: Kahneman & Tversky (1979), Tversky & Kahneman (1991), Köszegi & Rabin (2006, 2007), O'Donoghue & Sprenger (2018), Masatlioglu & Ellis (2022)
 - Field evidence: Camerer et al. (1997), DellaVigna et al. (2017), Rees-Jones (2018), Seibold (2021), Andersen et al. (2022), etc.
 - \rightarrow **Our contribution**: first welfare analysis
- Retirement behavior: Behaghel & Blau (2012), Brown (2013), Manoli & Weber (2016), Gelber et al. (2020), Gruber et al. (2022), Lalive et al. (2023)
 - Welfare and pension reforms: Haller (2022), Kolsrud et al. (2023)

 \rightarrow $Our\ contribution:$ incorporate reference dependence into welfare effects of pension reforms

Model: Setup

• Consumption good *x*, numeraire *y*, quasi-linear preferences, non-stochastic environment, price *p*, *reference point r*.

Whence r?

• Welfare: should reference-dependent payoffs be given normative weight? \rightarrow parameter $\pi \in \{0, 1\}$.

$$w(p, r) = u(x(p, r)) + z - px(p, r) + \pi v(x(p, r), r)$$

Revealed Preference

Model: Setup

• Consumption good *x*, numeraire *y*, quasi-linear preferences, non-stochastic environment, price *p*, *reference point r*.

Whence r?

 Welfare: should reference-dependent payoffs be given normative weight? → parameter π ∈ {0, 1}.

$$w(p, r) = u(x(p, r)) + z - px(p, r) + \pi v(x(p, r), r)$$

Theoretical Results: Welfare and Reference Points

▶ Formal Version

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization: under minimal conditions on v(x, r),

$$w_r = \underbrace{-(1-\pi)v_x x_r}_{r} \underbrace{+\pi v_r}_{r,r}$$

Behavioral Effect Direct Effect

• Which effect matters for welfare depends on π

• Assume no diminishing sensitivity

- Behavioral & direct effects are same-signed
 → sign of w_r invariant to judgment π!
- To determine sign, pinning down v_x is crucial
 ↔ How does ref. dep. modify willingness to pay for x?

Note: Partial derivatives v_x , v_r do not exist where x(p, r) = r (i.e. when bunching at reference point). We derive behavioral/direct effects characterization there too.

Theoretical Results: Welfare and Reference Points

▶ Formal Version

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization: under minimal conditions on v(x, r),

$$w_r = \underbrace{-(1-\pi)v_x x_r}_{\text{Direct First}} \underbrace{+\pi v_r}_{\text{First}},$$

Behavioral Effect Direct Effect

- \bullet Which effect matters for welfare depends on π
- Assume no diminishing sensitivity
 - Behavioral & direct effects are same-signed \rightarrow sign of w_r invariant to judgment π !
 - To determine sign, pinning down v_x is crucial
 ↔ How does ref. dep. modify willingness to pay for x?

Note: Partial derivatives v_x , v_r do not exist where x(p, r) = r (i.e. when bunching at reference point). We derive behavioral/direct effects characterization there too.

Theoretical Results: Welfare and Reference Points

▶ Formal Version

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization: under minimal conditions on v(x, r),

$$w_r = \underbrace{-(1-\pi)v_x x_r}_{\text{Direct Effect}} \underbrace{+\pi v_r}_{\text{First Effect}},$$

Behavioral Effect Direct Effect

- \bullet Which effect matters for welfare depends on π
- Assume no diminishing sensitivity
 - Behavioral & direct effects are same-signed \rightarrow sign of w_r invariant to judgment π !
 - To determine sign, pinning down v_x is crucial
 ↔ How does ref. dep. modify willingness to pay for x?

Note: Partial derivatives v_x , v_r do not exist where x(p, r) = r (i.e. when bunching at reference point). We derive behavioral/direct effects characterization there too.

Theoretical Results: Welfare and Prices

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization:

$$w_{p} = \underbrace{-(1-\pi)v_{x}x_{p}}_{\text{Behavioral Effect Direct Effect (Roy)}} \underbrace{-x(p, r)}_{\text{Direct Effect (Roy)}}$$

- First-order behavioral effect only in the bias case $(\pi = 0)$
- Scope for corrective taxation pivots on normative judgment: marginal internality = $-(1 \pi)v_x$
- Again, v_x is key \rightarrow next, turn to payoff formulations

Theoretical Results: Welfare and Prices

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization:

$$w_{p} = \underbrace{-(1-\pi)v_{x}x_{p}}_{\text{Behavioral Effect Direct Effect (Roy)}} \underbrace{-x(p, r)}_{\text{Direct Effect (Roy)}}$$

- First-order behavioral effect only in the bias case $(\pi = 0)$
- Scope for corrective taxation pivots on normative judgment: marginal internality = $-(1 \pi)v_x$
- Again, v_x is key \rightarrow next, turn to payoff formulations

Theoretical Results: Welfare and Prices

$$w = u(x) + z - px + \pi v(x, r)$$

General characterization:

$$w_{p} = \underbrace{-(1-\pi)v_{x}x_{p}}_{\text{Behavioral Effect Direct Effect (Roy)}} \underbrace{-x(p, r)}_{\text{Direct Effect (Roy)}}$$

- First-order behavioral effect only in the bias case $(\pi = 0)$
- Scope for corrective taxation pivots on normative judgment: marginal internality = $-(1 - \pi)v_x$
- Again, v_x is key \rightarrow next, turn to payoff formulations

Reduced-Form Reference-Dependent Payoffs

$$v(x,r) = \begin{cases} -\beta \Lambda(x-r) & x \ge r\\ (1-\beta)\Lambda(x-r) & x < r \end{cases}$$

- $\Lambda > 0$ captures the *magnitude* of loss aversion
- β ∈ [0, 1] captures the *direction* of loss aversion (over x vs. y), and other potential factors (e.g. payoffs over gains)
- Encompasses formulations from prior literature (incl. Tversky & Kahneman 1991; Köszegi & Rabin 2006; Crawford & Meng 2011, DellaVigna et al. 2017, Rees-Jones 2018, Thakral & Tô 2021, Seibold 2021, Andersen et al. 2022)
- But avoids imposing strong ex ante structure on welfare
 e.g. Simple Loss Aversion requires β = 0 ⇒ v_x ≥ 0

Reduced-Form Reference-Dependent Payoffs

$$v(x,r) = \begin{cases} -\beta \Lambda(x-r) & x \ge r\\ (1-\beta)\Lambda(x-r) & x < r \end{cases}$$

- $\Lambda > 0$ captures the *magnitude* of loss aversion
- β ∈ [0, 1] captures the *direction* of loss aversion (over x vs. y), and other potential factors (e.g. payoffs over gains)
- Encompasses formulations from prior literature (incl. Tversky & Kahneman 1991; Köszegi & Rabin 2006; Crawford & Meng 2011, DellaVigna et al. 2017, Rees-Jones 2018, Thakral & Tô 2021, Seibold 2021, Andersen et al. 2022)
- But avoids imposing strong ex ante structure on welfare
 e.g. Simple Loss Aversion requires β = 0 ⇒ v_x ≥ 0

Reduced-Form Intuition: Rationalizing Bunching

Magnitude of bunching responses governed by Λ

Reduced-Form Intuition: Rationalizing Bunching

Direction of bunching responses governed by β \bullet Illustration

Demand with Reduced-Form Payoff Formulation

Welfare effects of interest correspond to areas in graph Illustration

Social Welfare: Sufficient Statistics Formulas

Assume Utilitarian social welfare, index individuals by *i*. Groups *G*, *L*, *R* with $x_i(p, r)$ above, below and equal to *r*.

Social welfare effect of a change in the reference point Δr :

$$\Delta W \approx \Delta r \pi \left\{ \underbrace{E[\beta_i \Lambda_i | G] P[G]}_{\text{Direct effect for } G} - \underbrace{E[(1 - \beta_i) \Lambda_i | L] P[L]}_{\text{Direct effect for } L} \right\} \\ + \Delta r \underbrace{E\left[\Lambda_i \left(\beta_i - \frac{1}{2}\right) \middle| R\right] P[R]}_{\text{Direct=Behavioral effect for } R}$$

Social welfare effect of a price change Δp :

 $\Delta W \approx (1 - \pi) \frac{\Delta p}{p} \left\{ E\left[(1 - \beta_i) \Lambda_i \varepsilon_i x_i | L \right] P[L] - E\left[\beta_i \Lambda_i \varepsilon_i x_i | G \right] P[G] \right\} - \Delta p E[x_i]$

Social Welfare: Sufficient Statistics Formulas

Assume Utilitarian social welfare, index individuals by *i*. Groups *G*, *L*, *R* with $x_i(p, r)$ above, below and equal to *r*.

Social welfare effect of a change in the reference point Δr :

$$\Delta W \approx \Delta r \pi \left\{ E[\beta_i \Lambda_i | G] P[G] - E[(1 - \beta_i) \Lambda_i | L] P[L] \right\} + \Delta r E\left[\left. \Lambda_i \left(\beta_i - \frac{1}{2} \right) \right| R \right] P[R].$$

Social welfare effect of a price change Δp :

$$\Delta W \approx (1 - \pi) \frac{\Delta p}{p} \left\{ \underbrace{E\left[(1 - \beta_i)\Lambda_i \varepsilon_i x_i \mid L\right] P[L]}_{\text{internality*response} > 0 \text{ in } L} - \underbrace{E\left[\beta_i \Lambda_i \varepsilon_i x_i \mid G\right] P[G]}_{\text{internality*response} < 0 \text{ in } G} \right\}$$
$$- \underbrace{\Delta p E[x_i]}_{\text{Direct effect for any } \pi}$$

Sufficient Statistics and Empirical Identification

Key Result 1: Sufficient Statistics for Welfare

- Sufficient statistics for welfare effects are E[Λ_i], E[β_i] and π (assuming mutual independence)
- Plus price elasticity $E[\varepsilon_i]$ for Δp

Key Result 2: Empirical Identification from Bunching

- Bunching at reference point identifies $E[\Lambda_i]$
 - See also Rees-Jones (2018), Seibold (2021)
- Share of bunching from the left identifies $E[\beta_i]$
 - "Counterfactual density" captures *intrinsic WTP*, left bunching share captures how ref. dep. modifies WTP (v_x)

Sufficient Statistics and Empirical Identification

Key Result 1: Sufficient Statistics for Welfare

- Sufficient statistics for welfare effects are E[Λ_i], E[β_i] and π (assuming mutual independence)
- Plus price elasticity $E[\varepsilon_i]$ for Δp

Key Result 2: Empirical Identification from Bunching

- Bunching at reference point identifies $E[\Lambda_i]$
 - See also Rees-Jones (2018), Seibold (2021)
- Share of bunching from the left identifies $E[\beta_i]$
 - "Counterfactual density" captures *intrinsic WTP*, left bunching share captures how ref. dep. modifies WTP (v_x)

- Seibold (2021): reference dependence explains bunching responses to Normal Retirement Age (NRA) in Germany
 - NRA: salient threshold, framed as "normal time to retire"
- Simulate effects of two policies
 - 1. Increasing the NRA from 65 to 66 ightarrow shifts reference points
 - Strong effect on average retirement age: +4.5 months
 - 2. Increasing financial incentives for late retirement (Delayed Retirement Credit, DRC) \rightarrow changes price (of leisure)
 - DRC increase from 6% to 10.4% per year yields same effect on average retirement age as NRA reform
- Goal: estimate (money-metric) welfare effects of these reforms
- Use high-quality administrative data on German retirees

- Seibold (2021): reference dependence explains bunching responses to Normal Retirement Age (NRA) in Germany
 - NRA: salient threshold, framed as "normal time to retire"
- Simulate effects of two policies
 - 1. Increasing the NRA from 65 to 66 ightarrow shifts reference points
 - Strong effect on average retirement age: +4.5 months
 - 2. Increasing financial incentives for late retirement (Delayed Retirement Credit, DRC) \rightarrow changes price (of leisure)
 - DRC increase from 6% to 10.4% per year yields same effect on average retirement age as NRA reform
- Goal: estimate (money-metric) welfare effects of these reforms
- Use high-quality administrative data on German retirees

- Seibold (2021): reference dependence explains bunching responses to Normal Retirement Age (NRA) in Germany
 - NRA: salient threshold, framed as "normal time to retire"
- Simulate effects of two policies
 - 1. Increasing the NRA from 65 to 66 ightarrow shifts reference points
 - Strong effect on average retirement age: +4.5 months
 - 2. Increasing financial incentives for late retirement (Delayed Retirement Credit, DRC) \rightarrow changes price (of leisure)
 - DRC increase from 6% to 10.4% per year yields same effect on average retirement age as NRA reform
- Goal: estimate (money-metric) welfare effects of these reforms
- Use high-quality administrative data on German retirees

Direction of Loss Aversion in the Empirical Application

- Challenge: point-identifying β via counterfactual density requires strong assumptions (Blomquist et al. 2021)
- We begin with a specification assuming Simple Loss Aversion over leisure $(\beta=0)$
 - Empirically, loss aversion over leisure appears *a priori* dominant • Illustration
- Then we relax this restriction, allow for $\beta \ge 0$. Here: loss aversion over consumption (Behaghel-Blau 2012)
 - 1. Point-identify direction of loss aversion (β) under additional assumptions \rightarrow similar qualitative results
 - 2. Partially identify possibilities consistent with observed bunching \rightarrow for most plausible combinations, similar qualitative results

Direction of Loss Aversion in the Empirical Application

- Challenge: point-identifying β via counterfactual density requires strong assumptions (Blomquist et al. 2021)
- We begin with a specification assuming Simple Loss Aversion over leisure $(\beta=0)$
 - Empirically, loss aversion over leisure appears *a priori* dominant • Illustration
- Then we relax this restriction, allow for $\beta \ge 0$. Here: loss aversion over consumption (Behaghel-Blau 2012)
 - 1. Point-identify direction of loss aversion (β) under additional assumptions \rightarrow similar qualitative results
 - 2. Partially identify possibilities consistent with observed bunching \rightarrow for most plausible combinations, similar qualitative results

Empirical Specification

Baseline Model with Simple Loss Aversion over Lifetime Leisure $(\beta=0)$:

$$U_i(C,R) = C - \frac{n_i}{1 + \frac{1}{\varepsilon}} \left(\frac{R}{n_i}\right)^{1 + \frac{1}{\varepsilon}} - \begin{cases} 0 & R < \hat{R} \\ \widetilde{\Lambda}(R - \hat{R}) & R \ge \hat{R} \end{cases}$$

R: retirement age, \hat{R} : reference pt, C: consumption (NPV at 65).

- Crucial: reference dependence in terms of retirement age \equiv loss aversion over lifetime leisure
 - $R \ge \hat{R}$ is the *loss domain* for leisure
 - Increase NRA \equiv decrease reference point
- We estimate parameters via bunching and simulate behavior, welfare under various policy scenarios

Empirical Specification

Baseline Model with Simple Loss Aversion over Lifetime Leisure $(\beta = 0)$:

$$U_i(C,R) = C - \frac{n_i}{1 + \frac{1}{\varepsilon}} \left(\frac{R}{n_i}\right)^{1 + \frac{1}{\varepsilon}} - \begin{cases} 0 & R < \hat{R} \\ \widetilde{\Lambda}(R - \hat{R}) & R \ge \hat{R} \end{cases}$$

R: retirement age, \hat{R} : reference pt, *C*: consumption (NPV at 65).

- **Crucial:** reference dependence in terms of retirement age ≡ loss aversion over lifetime leisure
 - $R \ge \hat{R}$ is the *loss domain* for leisure
 - Increase NRA \equiv decrease reference point
- We estimate parameters via bunching and simulate behavior, welfare under various policy scenarios
Simulated Reforms: Fiscal Effects

Fiscal externalities already favor increasing the NRA.

Increasing the Normal Retirement Age

 $\pi=$ 0: Reducing consumption of leisure improves welfare (behavioral effect).

Increasing the Normal Retirement Age

 $\pi = 1$: Reduced leisure offset by ref. dep. payoff. But raising NRA shrinks losses in leisure (direct effect).

Increasing the Delayed Retirement Credit

 $\pi=$ 0: higher DRC corrects over-consumption of leisure (behavioral effect).

Increasing the Delayed Retirement Credit

$\pi=1:$ no behavioral welfare effect. Higher DRC is a distortionary tax on leisure.

Total Welfare Effects • Extended Simulations

Increasing the NRA has positive welfare effects regardless of π . Effects of financial incentives (DRC) highly ambiguous.

Welfare under Two-Dimensional Loss Aversion ($\beta > 0$)

(b) Optimal NRA

- We estimate \approx 13% bunching from the left. Graph
- With larger β , increasing NRA
 - implies more sub-optimally late retirement ($\pi = 0$) *OR* mounting consumption losses ($\pi = 1$)
 - makes it costlier to increase NRA, optimal NRA is lower

Welfare under Two-Dimensional Loss Aversion ($\beta > 0$)

(b) Optimal NRA

- We estimate pprox 13% bunching from the left. $igcup ext{Graph}$
- With larger β , increasing NRA
 - implies more sub-optimally late retirement $(\pi = 0)$ OR mounting consumption losses $(\pi = 1)$
 - makes it costlier to increase NRA, optimal NRA is lower

Conclusion

- We characterize welfare effects of policies under reference dependence:
 - General characterization: behavioral effects vs. direct effects
 - Sign of effects depends on form of payoffs; which effects matter depends normative judgements
- We apply the insights to pension design:
 - Loss aversion over *leisure* empirically dominant
 ⇒ increasing NRA improves welfare (locally)
 - Optimal NRA increase disciplined by loss aversion over consumption (and potentially other factors)
 - Welfare effects of financial retirement incentives highly ambiguous

Conclusion

- We characterize welfare effects of policies under reference dependence:
 - General characterization: behavioral effects vs. direct effects
 - Sign of effects depends on form of payoffs; which effects matter depends normative judgements
- We apply the insights to pension design:
 - Loss aversion over *leisure* empirically dominant
 ⇒ increasing NRA improves welfare (locally)
 - Optimal NRA increase disciplined by loss aversion over consumption (and potentially other factors)
 - Welfare effects of financial retirement incentives highly ambiguous

THANK YOU!

Questions/Comments: dreck@umd.edu seibold@uni-mannheim.de

APPENDIX SLIDES

Is the reference point a policy parameter? • Back

- We assume individuals evaluate options relative to an exogenous reference point r that can be influenced by policy
- The literature is unsettled on the origins of reference points
 - Salient options (Rosch 1975); status quo (Kahneman et al 1990); goals (Heath et al. 1999), beliefs/expectations (Köszegi and Rabin 2006, 2007), past experiences (Thakral and Tô 2020, DellaVigna et al. 2017)
- Growing evidence suggests policy can shift reference points in some settings, *at least locally*
 - Normal Retirement Age (Seibold 2021, Lalive et al 2023 Gruber et al 2020); Tax withholding rules (Rees-Jones 2018); Framing of Pigouvian incentives as taxes/subsidies (Homonoff 2018). Related experimental results in e.g. Kahneman et al (1990).
- Think of a generic policy reform *dP*:

dW _	∂W ∂r	∂W
dP _	<u> dr</u> dP	$+ \overline{\partial P}$

• We characterize $\frac{\partial W}{\partial r}$ in the theory, confront questions about $\frac{\partial r}{\partial P}$, $\frac{\partial W}{\partial P}$ in our empirical context.

Revealed Preference Foundations • Back

$$w(p, r) = u(x(p, r)) + z - px(p, r) + \pi v(x(p, r), r)$$

- Under $\pi = 1$, observed revealed preferences correspond to welfare
- Under $\pi = 0$, welfare coincides with intrinsic utility
 - Assume existence of a counterfactual frame in which individual maximizes intrinsic utility
 - Revealed preferences in this frame identify welfare (as in e.g. Chetty et al. 2009)
- Welfare criterion of Bernheim-Rangel (2009) \iff Option A preferred to B for any $\pi \in \{0, 1\}$
- Quasi-linearity \implies money-metric welfare, comparable under $\pi = 0$ and $\pi = 1$

Formulating Reference-Dependent Payoffs • Back

General form of reference-dependent payoffs:

$$v(x,r) = v(\mu(x) - \mu(r))$$

Assumptions:

• A1: $\mu(.)$ 2x-differentiable everywhere $w/\mu' > 0$, $\mu'' \le 0$; $\nu(z)$ continuous everywhere & 2x-differentiable for any $z \ne 0$; $\nu(0) = 0$ (gain-loss payoff); $\nu'_{-}(0) > \nu'_{+}(0)$ (*loss aversion*).

• A2:

- ν(z) is monotone over (-∞, 0) and over (0,∞) (domain-specific monotonicity)
 ν''(z) = 0 for any z ≠ 0 (No Diminishing Sensitivity)
- These assumptions capture most payoff formulations proposed in prior literature, except diminishing sensitivity, see Appendix.

Formulating Reference-Dependent Payoffs • Back

General form of reference-dependent payoffs:

$$v(x,r) = v(\mu(x) - \mu(r))$$

Assumptions:

• A1: $\mu(.)$ 2x-differentiable everywhere $w/\mu' > 0$, $\mu'' \le 0$; $\nu(z)$ continuous everywhere & 2x-differentiable for any $z \ne 0$; $\nu(0) = 0$ (gain-loss payoff); $\nu'_{-}(0) > \nu'_{+}(0)$ (*loss aversion*).

• A2:

- 1. $\nu(z)$ is monotone over $(-\infty, 0)$ and over $(0, \infty)$ (domain-specific monotonicity)
- 2. $\nu''(z) = 0$ for any $z \neq 0$ (No Diminishing Sensitivity)
- These assumptions capture most payoff formulations proposed in prior literature, except diminishing sensitivity, see Appendix.

Welfare Effect of Changing the Reference Point • Back

For given (p, r) we find three cases for x(p, r):

- x(p, r) > r: Gain domain (G); x(p, r) < r: Loss domain (L)
- x(p, r) = r: Reference domain (R)

Under A1, we find

Partial derivatives (v_x, v_r) do not exist in R domain but we can find a similar characterization:

$$v^{R}(x,r) \equiv (1-\pi)U(x,z-px) + \pi U(r,z-pr)$$

$$(p,r) \in R \implies w(p,r) = v^{R}(x(p,r),r)$$

$$\implies w_{r} = \underbrace{(1-\pi)v_{x}^{R}x_{r}}_{\text{Behavioral Effect}} + \underbrace{\pi v_{r}^{R}}_{\text{Direct Effect}} = u'(r) - p.$$

Welfare Effect of Changing the Reference Point • Back

For given (p, r) we find three cases for x(p, r):

- x(p, r) > r: Gain domain (G); x(p, r) < r: Loss domain (L)
- x(p, r) = r: Reference domain (R)

Under A1, we find

Partial derivatives (v_x, v_r) do not exist in R domain but we can find a similar characterization:

$$v^{R}(x,r) \equiv (1-\pi)U(x,z-px) + \pi U(r,z-pr)$$

$$(p,r) \in R \implies w(p,r) = v^{R}(x(p,r),r)$$

$$\implies w_{r} = \underbrace{(1-\pi)v_{x}^{R}x_{r}}_{\text{Behavioral Effect}} + \underbrace{\pi v_{r}^{R}}_{\text{Direct Effect}} = u'(r) - p.$$

Welfare Effect of Changing the Reference Point • Back

For given (p, r) we find three cases for x(p, r):

- x(p, r) > r: Gain domain (G); x(p, r) < r: Loss domain (L)
- x(p, r) = r: Reference domain (R)

Under A1, we find

Partial derivatives (v_x, v_r) do not exist in R domain but we can find a similar characterization:

$$v^{R}(x,r) \equiv (1-\pi)U(x,z-px) + \pi U(r,z-pr)$$

(p,r) $\in R \implies w(p,r) = v^{R}(x(p,r),r)$
 $\implies w_{r} = \underbrace{(1-\pi)v_{x}^{R}x_{r}}_{\text{Behavioral Effect}} + \underbrace{\pi v_{r}^{R}}_{\text{Direct Effect}} = u'(r) - p.$

Signing Individual Welfare Effects of Δr \square

Proposition: Under A1 and A2, at least one of the following obtains:

- (Everywhere Increasing): $v_x \ge 0$ for all $x \ne r$, and $w_r(p, r) \le 0$ almost everywhere
- (Everywhere Decreasing): $v_x \le 0$ for all $x \ne r$, and $w_r(p, r) \ge 0$ almost everywhere
- (Single-Peaked) $v_x \ge 0$ for x < r and $v_x \le 0$ for x > r, and for the unique reference point r^* s.t. $u'(r^*) = p$, $w_r \ge 0$ for $r \le r^*$ and $w_r \ge 0$ for $r \ge r^*$.

These conditions do not refer to π : sign of w_r invariant to normative judgments!

"Almost everywhere:" w_r might not exist at the boundary of R, which is measure zero.

Signing Individual Welfare Effects of Δr \square

Proposition: Under A1 and A2, at least one of the following obtains:

- (Everywhere Increasing): $v_x \ge 0$ for all $x \ne r$, and $w_r(p, r) \le 0$ almost everywhere
- (Everywhere Decreasing): $v_x \le 0$ for all $x \ne r$, and $w_r(p, r) \ge 0$ almost everywhere
- (Single-Peaked) $v_x \ge 0$ for x < r and $v_x \le 0$ for x > r, and for the unique reference point r^* s.t. $u'(r^*) = p$, $w_r \ge 0$ for $r \le r^*$ and $w_r \ge 0$ for $r \ge r^*$.

These conditions do not refer to π : sign of w_r invariant to normative judgments!

"Almost everywhere:" w_r might not exist at the boundary of R, which is measure zero.

Example 1: Simple Loss Aversion • Back

 $v_x \ge 0$ everywhere; individually optimal r is any $r \in (-\infty, r^*]$, where $u'(r^*) = p$.

Ex 2: Loss Aversion Plus Gain Utility (Tversky & Kahneman 1991) • Back

 $v_x > 0$ everywhere; individually optimal r is $(-\infty, r^*]$ for $\pi = 0$ and $-\infty$ for $\pi = 1$.

Ex 3: 2-Dimensional Loss Aversion, r on Budget Constraint \bullet Back

v is single-peaked at r^* ; welfare is peaked at intrinsic optimum r^* .

Ex 4: Gain Discounting • Back

Resembles SLA over y; $v_x \leq 0$ everywhere. Individually optimal r is $r \in [r^*, \infty)$.

All Formulations (in Paper Appendix) • Back

	(1)	(2)	(3)
Description	Reference-Dependent Payoff	Assumptions A1 & A2	Case
Simple Loss Aversion	$1\{x < r\}\Lambda(x - r)$	Yes	everywhere increasing + single-peaked
Loss Aversion with Gain Utility	$(\eta + 1\{x < r\}\Lambda)(x - r)$	Yes	everywhere increasing
Utils Formulation (Köszegi-Rabin)	$(\eta + 1\{x < r\}\Lambda)(u(x) - u(r))$	Yes	everywhere increasing
Gain Discounting	$\mathbb{1}\{x > r\}\Gamma(x - r)$	Yes	everywhere decreasing + single-peaked
Simple Loss Aversion with Diminishing Sensitivity	$-\alpha^{-1}(1\{x < r\}\Lambda)(r-x)^{\alpha}$	2.2 Fails	N/A
Loss Aversion with Gain Utility & Diminishing Sensitivity	$ \begin{array}{l} \alpha^{-1}(\eta)(x-r)^{\alpha}, \text{ if } x \geq r \\ -\alpha^{-1}(\eta + \Lambda)(r-x)^{\alpha}, \text{ if } x < r \end{array} $	2.2 Fails	N/A
Two-Dimensional Loss Aversion, (r_x, r_y) on budget constraint	$1\{x < r_x\}\Lambda_x(x - r_x) \\ +1\{y < r_y\}\Lambda_y(y - r_y)$	Yes	single-peaked
Two-Dimensional Loss Aversion with Gain Utility, $({\it r}_{\rm x},{\it r}_{\rm y})$ on budget constraint	$\begin{array}{l} (\eta_x + 1\{x < r_x\}\Lambda_x)(x - r_x) + \\ (\eta_y + 1\{y < r_y\}\Lambda_y)(y - r_y) \end{array}$	Yes	depends on parameters
Two-Dimensional Loss Aversion, any (r_x, r_y)	$1\{x < r_x\}\Lambda_x(x - r_x) \\ +1\{y < r_y\}\Lambda_y(y - r_y)$	1.3 Fails	N/A

Notes: The table summarizes the formulations of reference-dependent payoffs considered in the Appendix. Column (1) shows the functional form of reference-dependent payoffs for each formulation. Columns (2) and (3) describe the features of each formulation that pin down the sign of key welfare effects: whether the formulation satisfies Assumptions 1 and 2, and the which of the three possibilities for v_x obtains.

Flexible Reduced Form: Details • Back

- We focus henceforth on $\beta \in [0, 1] \implies v$ is single-peaked.
 - $\beta <$ 0 would generate extreme policy recommendations, and
 - *Multi-dimensional* KT91 payoff tends to be single-peaked
- Our formulation as a linear approximation of any formulation satisfying A1 & A2.
 - The approximation is quantitatively exact in the reference domain *R*.
 - Non-linearities become more important, quantitatively, the larger is |x(p, r) r|, due e.g. to
 - Whether units of gains and losses $\mu(z)$ are units of the good or utils (see Kőszegi-Rabin 2006, Proposition 2)
 - Potentially also diminishing sensitivity, if we relax A2.2.
- A restriction Kőszegi & Rabin (2006) impose on differences in payoffs across dimensions would essentially imply $\beta = 0.5$.

Flexible Reduced Form: Details **Back**

- We focus henceforth on $\beta \in [0, 1] \implies v$ is single-peaked.
 - $\beta <$ 0 would generate extreme policy recommendations, and
 - Multi-dimensional KT91 payoff tends to be single-peaked
- Our formulation as a linear approximation of any formulation satisfying A1 & A2.
 - The approximation is quantitatively exact in the reference domain *R*.
 - Non-linearities become more important, quantitatively, the larger is |x(p, r) r|, due e.g. to
 - Whether units of gains and losses $\mu(z)$ are units of the good or utils (see Kőszegi-Rabin 2006, Proposition 2)
 - Potentially also diminishing sensitivity, if we relax A2.2.
- A restriction Kőszegi & Rabin (2006) impose on differences in payoffs across dimensions would essentially imply $\beta = 0.5$.

Flexible Reduced Form: Details **Back**

- We focus henceforth on $\beta \in [0, 1] \implies v$ is single-peaked.
 - $\beta <$ 0 would generate extreme policy recommendations, and
 - Multi-dimensional KT91 payoff tends to be single-peaked
- Our formulation as a linear approximation of any formulation satisfying A1 & A2.
 - The approximation is quantitatively exact in the reference domain *R*.
 - Non-linearities become more important, quantitatively, the larger is |x(p, r) r|, due e.g. to
 - Whether units of gains and losses $\mu(z)$ are units of the good or utils (see Kőszegi-Rabin 2006, Proposition 2)
 - Potentially also diminishing sensitivity, if we relax A2.2.
- A restriction Kőszegi & Rabin (2006) impose on differences in payoffs across dimensions would essentially imply $\beta = 0.5$.

Bunching and the Dimensions of Loss Aversion

▶ Back to Theory ▶ Back

• Back to Empirical

Bunching and the Dimensions of Loss Aversion

▶ Back to Theory

• Back to Empirical

Bunching and the Dimensions of Loss Aversion

▶ Back to Theory) → Ba

Back to Empirical

Welfare Effect of Increasing r: Loss Domain \bigcirc

Welfare Effect of Increasing r: Gain Domain \bigcirc

Welfare Effect of Increasing r: Reference Domain, $r > r^*$

Welfare Effect of Increasing r: Reference Domain, $r < r^*$ Back

Welfare Effect of Increasing p: Loss Domain • Back

Welfare Effect of Increasing p: Gain Domain • Back

Welfare Effect of Increasing p: Reference Domain • Back

Extended Simulations • Back

Institutional Linkage Between NRA and Benefits

	Policy 1: Normal Retirement Age to 66	
	Stylized scenario: without benefit cut	Realistic scenario: with benefit cut
Contributions collected	+2,359	+2,359
Benefits paid	+3,999	+7,658
Net fiscal effect	+6,358	+10,017
Worker consumption	+4,230	+571
Disutility from work	-2,950	-2,950
Worker welfare ($\pi=$ 0)	+1,280	-2,379
Ref. dep. disutility from work	-6,835	-6,835
Ref. dep. utility from ref. point	+7,946	+7,946
Worker welfare $(\pi=1)$	+2,391	-1,268
Total welfare ($\pi = 0$)	+7,638	+7,638
Total welfare $(\pi=1)$	+8,749	+8,749

Two-Dimensional Loss Aversion: Estimating the Left Bunching Share

Further Questions Back

- For reference dependence in general
 - Reference point formation: when can policy establish and shift ref points
 - Use other tools from behavioral public economics to analyze payoff formulation and/or welfare (e.g. Chetty Looney Kroft 2009; Allcott Lockwood Taubinsky 2019; Allcott & Kessler 2019; Goldin & Reck 2020)
 - Welfare economics of reference dependence *under uncertainty*
- For optimal statutory retirement ages
 - Left vs right bunching in other contexts
 - Why do we see so much right bunching for German NRA?
 - Framing of incentives vs location relative to intrinsic optima
 - With multiple potential reference points (e.g. Early & Normal Retirement Age), what do people use?
 - Dynamics/inertia and reforms (e.g. Gelber, Jones, Sacks 2020)